Home / Publications / Towards machine learning prediction of the fluorescent protein absorption spectra

Towards machine learning prediction of the fluorescent protein absorption spectra

Roman Alekseevich Stepanyuk 1, 2
Roman Alekseevich Stepanyuk
Igor Viktorovich Polyakov 1, 3
Igor Viktorovich Polyakov
Anna Mikhailovna Kulakova 1
Anna Mikhailovna Kulakova
Ekaterina Igorevna Marchenko 4
Ekaterina Igorevna Marchenko
Mariya Grigor'evna Khrenova
1 Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
2 Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russian Federation
3 N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
4 Department of Materials Science, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
Published 2024-10-22
CommunicationVolume 34, Issue 6, 788-791
1
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Stepanyuk R. A. et al. Towards machine learning prediction of the fluorescent protein absorption spectra // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 788-791.
GOST all authors (up to 50) Copy
Stepanyuk R. A., Polyakov I. V., Kulakova A. M., Marchenko E. I., Khrenova M. G. Towards machine learning prediction of the fluorescent protein absorption spectra // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 788-791.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.10.007
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.007
TI - Towards machine learning prediction of the fluorescent protein absorption spectra
T2 - Mendeleev Communications
AU - Stepanyuk, Roman Alekseevich
AU - Polyakov, Igor Viktorovich
AU - Kulakova, Anna Mikhailovna
AU - Marchenko, Ekaterina Igorevna
AU - Khrenova, Mariya Grigor'evna
PY - 2024
DA - 2024/10/22
PB - Mendeleev Communications
SP - 788-791
IS - 6
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Stepanyuk,
author = {Roman Alekseevich Stepanyuk and Igor Viktorovich Polyakov and Anna Mikhailovna Kulakova and Ekaterina Igorevna Marchenko and Mariya Grigor'evna Khrenova},
title = {Towards machine learning prediction of the fluorescent protein absorption spectra},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Oct},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.007},
number = {6},
pages = {788--791},
doi = {10.1016/j.mencom.2024.10.007}
}
MLA
Cite this
MLA Copy
Stepanyuk, Roman Alekseevich, et al. “Towards machine learning prediction of the fluorescent protein absorption spectra.” Mendeleev Communications, vol. 34, no. 6, Oct. 2024, pp. 788-791. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.007.

Keywords

dipole moment variation upon excitation.
fluorescent proteins
machine learning
QM/MM molecular dynamics

Abstract

We demonstrate that machine learning models trained on a set of features obtained from QM/MM molecular dynamic trajectories of fluorescent proteins can be used to predict the chromophore dipole moment variation upon excitation, the quantity related to the electronic excitation energy. Linear regression, gradient boosting, and artificial neural network- based models were considered using cross-validation on the training dataset. Gradient boosting approach proved to be the most accurate for both internal (R2 = 0.77) and external (R2 = 0.7) test sets.

References

.
Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral Angles
Best R.B., Zhu X., Shim J., Lopes P.E., Mittal J., Feig M., MacKerell A.D.
Journal of Chemical Theory and Computation, 2012
.
Comparison of simple potential functions for simulating liquid water
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L.
Journal of Chemical Physics, 1983
.
NAMD goes quantum: an integrative suite for hybrid simulations
Melo M.C., Bernardi R.C., Rudack T., Scheurer M., Riplinger C., Phillips J.C., Maia J.D., Rocha G.B., Ribeiro J.V., Stone J.E., Neese F., Schulten K., Luthey-Schulten Z.
Nature Methods, 2018
.
Scalable molecular dynamics on CPU and GPU architectures with NAMD
Phillips J.C., Hardy D.J., Maia J.D., Stone J.E., Ribeiro J.V., Bernardi R.C., Buch R., Fiorin G., Hénin J., Jiang W., McGreevy R., Melo M.C., Radak B.K., Skeel R.D., Singharoy A., et. al.
Journal of Chemical Physics, 2020
.
Dipole Moment Variation Clears up Electronic Excitations in the π-Stacked Complexes of Fluorescent Protein Chromophores
Khrenova M.G., Mulashkin F.D., Bulavko E.S., Zakharova T.M., Nemukhin A.V.
Journal of Chemical Information and Modeling, 2020
.
Photoinduced chemistry in fluorescent proteins: Curse or blessing?
Acharya A., Bogdanov A.M., Grigorenko B.L., Bravaya K.B., Nemukhin A.V., Lukyanov K.A., Krylov A.I.
Chemical Reviews, 2016
.
Color Hues in Red Fluorescent Proteins Are Due to Internal Quadratic Stark Effect
Drobizhev M., Tillo S., Makarov N.S., Hughes T.E., Rebane A.
Journal of Physical Chemistry B, 2009
.
Unified Model for Photophysical and Electro-Optical Properties of Green Fluorescent Proteins
Lin C., Romei M.G., Oltrogge L.M., Mathews I.I., Boxer S.G.
Journal of the American Chemical Society, 2019
.
Long- and Short-Range Electrostatic Fields in GFP Mutants: Implications for Spectral Tuning
Drobizhev M., Callis P.R., Nifosì R., Wicks G., Stoltzfus C., Barnett L., Hughes T.E., Sullivan P., Rebane A.
Scientific Reports, 2015
.
The key to the yellow-to-cyan tuning in the green fluorescent protein family is polarisation
Nifosì R., Mennucci B., Filippi C.
Physical Chemistry Chemical Physics, 2019
.
The fluorescent protein palette: tools for cellular imaging
Day R.N., Davidson M.W.
Chemical Society Reviews, 2009
.
Reducing the Environmental Sensitivity of Yellow Fluorescent Protein
Griesbeck O., Baird G.S., Campbell R.E., Zacharias D.A., Tsien R.Y.
Journal of Biological Chemistry, 2001
.
Impact of 2′-hydroxyl sampling on the conformational properties of RNA: Update of the CHARMM all-atom additive force field for RNA
Denning E.J., Priyakumar U.D., Nilsson L., Mackerell A.D.
Journal of Computational Chemistry, 2011
.
Crystal Structure of Venus, a Yellow Fluorescent Protein with Improved Maturation and Reduced Environmental Sensitivity
Rekas A., Alattia J., Nagai T., Miyawaki A., Ikura M.
Journal of Biological Chemistry, 2002
.
Fluorescent Proteins for Investigating Biological Events in Acidic Environments
Shinoda H., Shannon M., Nagai T.
International Journal of Molecular Sciences, 2018
.
Improving the Second-Order Nonlinear Optical Response of Fluorescent Proteins: The Symmetry Argument
De Meulenaere E., Nguyen Bich N., de Wergifosse M., Van Hecke K., Van Meervelt L., Vanderleyden J., Champagne B., Clays K.
Journal of the American Chemical Society, 2013
.
Machine-Learning-Guided Mutagenesis for Directed Evolution of Fluorescent Proteins
Saito Y., Oikawa M., Nakazawa H., Niide T., Kameda T., Tsuda K., Umetsu M.
ACS Synthetic Biology, 2018
.
Heterogeneity of the GFP fitness landscape and data-driven protein design
Gonzalez Somermeyer L., Fleiss A., Mishin A.S., Bozhanova N.G., Igolkina A.A., Meiler J., Alaball Pujol M., Putintseva E.V., Sarkisyan K.S., Kondrashov F.A.
eLife, 2022
.
Advances in machine learning for directed evolution
Wittmann B.J., Johnston K.E., Wu Z., Arnold F.H.
Current Opinion in Structural Biology, 2021
.
Multi-label in vivo STED microscopy by parallelized switching of reversibly switchable fluorescent proteins
.
SESNet: sequence-structure feature-integrated deep learning method for data-efficient protein engineering
Li M., Kang L., Xiong Y., Wang Y.G., Fan G., Tan P., Hong L.
Journal of Cheminformatics, 2023