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Figure S1. Bonds distributions in dataset.
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Figure S2. Dihedrals distributions in dataset.
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Figure S3. The ESP feature (sum of ESP on all atoms) distribution in dataset.
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Figure S4. Feature correlation matrix.
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not using the esp

for prot in prot_list:

lr_cv_score = cross_val_scorefestimator = pile_lr, X= X_train[X_train['prot'] == prot].drop(labels= ['prot', 'esp_sum'],

y=y_train[X_train['prot'] == prot], n_jobs=-1,

scoring='neg_mean_absolute_error', cv=4)

print(prot+' LR 4-fold CV mean:', round(abs{lr_cv_score.mean()),3))
pile_lr.fit(X_train[X_train['prot'] == prot].drop(labels=z ['prot',
y_pred = pile_lr.predict(X_test[X_test['prot'] == prot].drop(labels=z ['prot',

axis=1),

'esp_sum'], axiszl),y train[X_train['prot'] == prot])
‘esp_sum'], axisz1))

print(prot+' LR test MAE:', round(mean_absolute_error(y_test[X_test['prot'] == prot], y_pred),3))

print(prot+' LR test R2:', round(r2_score(y_test[X_test['prot'] == prot], y_pred),3))

eyfp LR 4-fold CV mean: ©.288
eyfp LR test MAE: ©.251

eyfp LR test R2: 8.723

venus LR 4-fold CV mean: 8.323
venus LR test MAE: ©.327

venus LR test R2: ©.462

citrin LR 4-fold CV mean: @.247
citrin LR test MAE: ©8.22

citrin LR test R2: @.706
shardonnay LR 4-fold CV mean: ©.295
shardonnay LR test MAE: ©.295
shardonnay LR test R2: ©.189
egfp LR 4-fold CV mean: ©.138
egfp LR test MAE: ©.123

egfp LR test R2: 8.935

with the esp

for prot in prot_list:

1r_cv_score = cross_val_score(estimator = pile_lr, X= X_train[X_train['prot'] == prot].drop(labels= ['prot'], axis=z1),

y=y_train[X_train['prot'] == prot], n_jobs=-1,

scoring="'neg_mean_absolute_error', cv=4)

print(prot+' LR 4-fold CV mean:', round(abs({lr_cv_score.mean()),3))

pile_lr.fit(X_train[X_train['prot'] == prot].drop(labels= ['prot'], axis=z1),y_train[X_train['prot'] == prot])

y_pred = pile_lr._predict(X_test[X_ test['prot'] == prot].drop(labels=z ['prot’'], axis=z1))

print(prot+' LR test MAE:', round(mean_absolute_error(y_test[X_ test['prot'] == prot], y_pred),3))

print(prot+' LR test R2:', round{r2_score(y_test[X_test['prot'] == prot], y_pred),3))

eyfp LR 4-fold CV mean: ©.285
eyfp LR test MAE: ©.252

eyfp LR test R2: ©.725

venus LR 4-fold CV mean: ©.323
venus LR test MAE: @.328

venus LR test R2: ©.459

citrin LR 4-fold CV mean: ©.24%
citrin LR test MAE: 8.214
citrin LR test R2: 8.716
shardonnay LR 4-fold CV mean: ©.296
shardonnay LR test MAE: 8.295
shardonnay LR test R2: 8.193
egfp LR 4-fold CV mean: 8.139
egfp LR test MAE: ©.121

egfp LR test R2: ©.937

Figure SS. Individual linear models result.
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1r_coef_df = pd.DataFrame({"Feature":X_train.drop(labels= ['prot'], axis=1).columns.tolist(),

"Coefficients":pile_lr.named_steps[ 'model'].coef_})
1r_coef_df['abs_coef'] = lr_coef_df['Coefficients'].astype('float').abs()
1r_coef_df.sort_values(by='abs_coef', ascending=False)

Feature Coefficients abs_coef

7 bondd 0319883 0.319883
8 bond% -0.261963 0.261963
5 bondé -0.162945 0.162945
] bond? -0.145625 0.145625
9  bondi( 0.130937 0.130937
3 bond4 0.105173 0.105173
10 bond11 0.099151 0.099151
4 bond3 0.070345 0.070245
14 bond1s -0.066325 0.066325
1 bond12 -0.065213  0.065213
o bond1 0.051899 0.051899
1 bond2 -0.050590 0.050590
12 bond13 0.049666 0.049666

2 bond3 -0.048492 0.048492

-

3 bondi4 -0.033273 0.033273

=

5 dihedralt 0.024475 0.024475

17 esp_sum -0.018151  0.018151

=

6 dihedral2 -0.009225 0.009225

Figure S6. Feature importance analysis for linear model.
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