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Fluorescent proteins are popular tools for visualization of 
processes in living cells and tissues,1,2 including super-resolution 
microscopy.3,4 A chromophore group is formed autocatalytically 
in the protein β-barrel from three amino acid residues of the 
protein (Figure 1). The first discovered fluorescent protein GFP 
has green fluorescence, but now, a fluorescent protein palette 
covers whole visible regions.5 One of the practical tasks in this 

field is to modify the protein to get advanced photochemical 
properties in the required spectral range. There is already a 
number of works that utilize artificial intelligence (AI) for 
fluorescent protein development.6–11 Alternatively, predictive 
models based on physical background can be suggested. 
Fluorescent proteins exhibit a second-order Stark effect, which 
manifests itself in a quadratic dependence of the electronic 
excitation energy on the dipole moment variation (DMV) upon 
excitation.12–14 Such dependences were also demonstrated for 
green and red fluorescent protein families in QM/MM based 
simulations: the energy corresponding to the maximum of the 
experimental absorption band demonstrates a quadratic 
dependence on the calculated DMV.15,16 By now, such 
calculations were performed exclusively for minima on the 
potential energy surface. Calculation of the DMV along 
molecular dynamic (MD) trajectories can derive to the DMV 
distribution that can, principally, be converted to the absorption 
spectrum band. To get a representative distribution, one needs to 
calculate the DMV for a set of thousands points. The DMV 
calculation even at the TDDFT level of theory is a time-
consuming task. In this regard, the attractive alternative is to 
obtain correlations between the DMV and ground electronic 
state geometry parameters that can be extracted on the fly from 
the MD trajectory.

Herein, we aim to solve the regression problem of predicting 
DMV values using machine learning methods (MLMs). The 
dataset is composed of descriptors derived from MD simulations 
with the combined quantum mechanics/molecular mechanics 
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We demonstrate that machine learning models trained on a 
set of features obtained from QM/MM molecular dynamic 
trajectories of fluorescent proteins can be used to predict the 
chromophore dipole moment variation upon excitation, the 
quantity related to the electronic excitation energy. Linear 
regression, gradient boosting, and artificial neural network-
based models were considered using cross-validation on the 
training dataset. Gradient boosting approach proved to be 
the most accurate for both internal (R2 = 0.77) and external 
(R2 = 0.7) test sets.
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Figure  1  b-Barrel structure of the fluorescent protein: chromophore is 
shown by sticks (upper panel). Chemical structure of the anionic GFP 
chromophore; b and d notations correspond to bonds and dihedral features 
utilized in machine learning models (lower panel).
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(QM/MM) potentials of model systems representing five 
fluorescent proteins: EGFP, EYFP, Venus, Citrine, and 
SHardonnay with the same 4-(p-hydroxybenzylidene)-5-
imidazolinone chromophore. We compare different MLMs to 
discriminate the most suitable one and to reveal descriptors 
mostly contributing to the DMV values.

We performed QM/MM MD simulations† for all considered 
systems and obtained sets of states represented by MD frames 
for each protein. As an initial set of descriptors, we identified 
bond lengths in the fluorophore fragment and dihedral angles 
between the planes of fluorophore rings (see Figure 1). All 
geometry parameters demonstrate normal distributions 
(Figure S1 and S2, see Online Supplementary Materials). The 
effect of protein was taken into account by electrostatic potential 
(ESP) calculated on the chromophore atoms (Figure S3). ESP 
values include contributions from all protein atoms and solvents 
that could be the measure of the discrimination of a particular 
protein. ESP values calculated at different atoms highly correlate 
with each other (Figure S4). Therefore, we utilize only the sum 
of ESP values calculated on all chromophore atoms at each MD 
frame. 

The dataset for each protein contains 400 points with 
calculated descriptors and DMV values. This number of data 
points is not enough to utilize sophisticated methods for each 
individual protein. Thus, we utilize scaling and compare the 
linear regression (LR) model. We perform these calculations to 
demonstrate that selected features contribute to the DMV 
prediction. The ESP feature proved to be irrelevant for the linear 
models of the individual proteins (Figure S5). The basic model, 
such as linear regression, can predict the DMV with a selected 
feature set with great success (R2 > 0.9) for EGFP and limited 
(R2 < 0.5) for Venus. Application of more complex models 
requires a larger dataset. Also, the unified model for prediction 
of the DMV for different proteins with the same chromophore is 
required. Therefore, we combined datasets for all considered 
systems in a single dataset and performed the following MLM 
analysis.

For a unified model based on 5 proteins, the 4-fold cross-
validation MAE for linear models is about 0.288. Approaches 
with regularization do not provide any improvement on this 
dataset. Two bridging bonds (bond 8, bond 9) and neighboring 
bonds including two C–C bonds from the 6-membered ring 
(bond 6, bond 7), and one C–C bond from the 5-membered ring 
(bond 10) are the most important features of the linear model 
(Figures 1, S6). This is in line with the previous observations that 
for stationary points the excitation energy is mainly determined 
by bridging bond lengths.13,16,17 The ESP sum is not among 
important features similarly to individual models. Gradient 
boosting with the LightGBM (LGBM) yields cross-validation 
MAE values of 0.242 without ESP, and a slightly smaller MAE 
of 0.235 after adding the ESP feature. Further testing of the 
LGBM model on the internal test set yields even better metric 
values: MAE = 0.23 and R2 = 0.77. The internal test results for 
each protein are shown in Figure 2. It demonstrates that quality 
of the LGBM model prediction is not the same for all the proteins 
which is probably related to the DMV distribution of individual 
proteins. 

The SHAP analysis of feature importance for LGBM (Figure 3) 
demonstrates agreement with the linear model coefficients, but 
the ESP sum feature is on the 4th place in importance, and 
improves the quality of the unified 5-protein LGBM model. 

To test the ability of DMV prediction for new protein variants 
with the same chromophore and amino acid substitutions in the 
protein b-barrel, an external test was conducted with 4 proteins, 
EYFP, Venus, Citrine, and SHardonnay, as training and validation 
dataset and the EGFP data as a test. This division is of practical 
interest, as the model is trained on yellow fluorescent proteins 
with additional stacking interactions between the chromophore 
and a side chain of an aromatic amino acid residue and the EGFP 
lacks these interactions. Figure 4 depicts distributions of the 

†	 Computational protocol. Full-atom model systems of 5 fluorescent 
proteins were constructed using the available X-ray structures of proteins: 
EGFP (PDB ID: 4EUL),18 SHardonnay (PDB ID: 3V3D)19 and its 
variant EYFP (Shardonnay with the F203Y amino acid substitution), 
Venus (PDB ID: 1MYW),20 and Citrine (PDB ID: 1HUY).21 Hydrogen 
atoms were added using the Reduce program22 and manually checked. 
The model system was solvated in a rectangular cell and neutralized. The 
CHARMM36 force field23,24 was used to describe the chromophore and 
protein macromolecule, and TIP3P25 was used for water molecules. 
Classical molecular dynamic simulations were performed for the initial 
system equilibration in the NAMD program for 5 ns.26 All MD 
calculations with classical and combined potentials were performed in 
the canonical NPT ensemble at p = 1 atm and T = 300  K with a 1 fs 
integration step. A representative frame from the classical trajectory was 
selected for each model system and used as a starting structure for 
molecular dynamic simulations with QM/MM potentials. The length of 
each QM/MM MD trajectory was 11 ps and the first 1 ps was excluded 
from the following analysis. The QM subsystem consisted of a 
chromophore, neighboring amino acid residues, and water molecules of 
the chromophore-containing pocket. The Kohn–Sham DFT approach was 
applied for the QM part with the hybrid functional PBE027 with empirical 
corrections for dispersion interactions D328 and a cc-pvdz basis set. 
Calculations of energies and forces in the QM subsystem were carried out 
in the TeraChem program;29 the MM part and MD step calculations were 
performed in the NAMD program using a special interface.30

	 TDDFT with a hybrid functional recommended for calculations of 
electronic transitions wB97X-D331 and cc-pvdz basis set was utilized to 
calculate the  dipole moment variation upon excitation (DMV). 
Calculations of excited states were carried out using the ORCA 
program.32 The DMV was calculated for the transition from the ground 
singlet state to the lowest excited state with a large oscillator strength. To 
calculate the  dipole moment variation upon excitation, 400 frames of 
QM/MM MD trajectories were selected from the last 10 ps (every 25 fs). 
QM/MM calculations in the ground state and vertical electron transitions 
were carried out in the electron embedding variant, i.e., the charges of the 
MM environment contributed to the one-electron part of the QM 
Hamiltonian.
	 Models were trained with three different dataset splits: on individual 
proteins with a test set (20% points of the protein data); a training set of 
5 proteins with a pre-selected internal test set (20% of each protein); a 
training set of 4 proteins with an external test set sampling (EGFP 
protein). For linear models the data was scaled through StandardScaler. 
The 4-fold cross validation for all models is used. The hyperparameter 
optimization was performed through GridSearchCV. Objects necessary 
for training linear models were taken from the scikit-learn library.33 
LGBMRegressor from LightGBM34 and TabNetRegressor from pytorch-
tabnet35 were used. Machine learning protocol code is deposited on 
Zenodo, https://doi.org/10.5281/zenodo.11393469.
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Figure  2  LGBM model prediction for internal test sets for 5-protein 
LGBM model.
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DMV in all datasets. The DMV distribution of the EGFP is 
shifted relative to other distributions. From the machine learning 
side, this indicates that the DMV prediction for the EGFP from 
the model trained on yellow proteins might be not accurate as the 
predicting value distribution for the test protein does slightly 
overlap with the distributions for the training proteins. Still, the 
model was able to predict the shift of the EGFP distribution to 
the larger values that correspond to the larger excitation energies 
according to the quadratic Stark effect. This is in line with the 
experimental observation that the absorption band of the EGFP 
is shifted to the shorter wavelength region compared with yellow 
proteins.

In cross-validation, LBGM has a lower MAE value of 0.25 
compared to LR (MAE = 0.3). On the validation set, LGBM 
with the additional ESP feature did not provide any improvement 
precisely because its distribution for the test protein (external 
test) practically does not overlap with the ESP distribution area 
of the training set (Figure S3). Nevertheless, even the LGBM 
model based only on geometry features gives quite satisfactory 
results on the external test set (MAE = 0.29 and R2 = 0.70). 
These predicting quantities are slightly worse compared with the 
prediction for the internal dataset performed on 5-protein model 
(R2 = 0.77). A comparison of predictions for the external and 
internal test sets is illustrated in Figure 5. 

We do understand that for such a small feature and dataset 
artificial neural networks (ANNs) are not the best modeling 
tools, yet we try an ANN model for external set value prediction. 
We employ the TabNet neural network architecture designed for 
tabular learning. The cross-validation results were close to the 
LGBM model (MAE = 0.25), but the test MAE = 0.429 and 

R2 = 0.327 proved that such model is not applicable. Nevertheless, 
we suppose that in the future, given larger datasets of protein 
variants and more features attributed to local chromophore 
environment, the ANN models would be more useful to predict 
DMV distributions and excitation spectra for new protein 
variants. Local environment features can include stacking 
interactions with the chromophore (distance between centers of 
rings, dihedral angle between ring plains), positions of the most 
important charged residues relative to the chromophore, number 
and average distance of hydrogen bonds to oxygen and nitrogen 
atoms of the chromophore, etc.

To conclude, we demonstrate that machine learning 
approaches based on geometry and ESP descriptors can predict 
the DMV values of fluorescent proteins, which is applicable in 
the field of rational design of new fluorescent proteins. We 
obtained high accuracy gradient boosting model. Based on the 
metrics obtained on the internal test set, such a model can be 
utilized to predict additional DMV values from the available 
geometry parameters and the ESP on the chromophore atoms 
from molecular dynamic trajectories. This reduces the 
computational cost of simulations as it requires only the ground 
electronic state QM/MM MD trajectory and a relatively small 
training set with explicitly calculated DMV values. Prediction of 
DMV values for new proteins is also possible, still it has 
potentially more challenges in both obtaining stable models and 
determining their applicability domain. Now, we see promise in 
introducing additional descriptors of the local environment, 
which would allow us to take into account the influence of a 
specific protein environment on a chromophore fragment more 
accurately. Additionally, an increase in datasets will broaden the 
variety of applicable machine learning methods.

This work was supported by Interdisciplinary Scientific and 
Educational School of Moscow State University ‘Brain, cognitive 
systems, artificial intelligence’ (#23-Sh03-04). The research was 
carried out using the equipment of the shared research facilities 
of HPC computing resources at Lomonosov Moscow State 
University. 
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Figure  4  DMV distribution in training datasets.
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