Available online at www.sciencedirect.com

ScienceDirect

Mendeleev Commun., 2024, 34, 788-791

Mendeleev
Communications

Towards machine learning prediction
of the fluorescent protein absorption spectra

Roman A. Stepanyuk,®? Igor V. Polyakov,2¢ Anna M. Kulakova,?
Ekaterina I. Marchenko® and Maria G. Khrenova*aP

@ Department of Chemistry, M. V. Lomonosov Moscow State University, 119991 Moscow,
Russian Federation. E-mail: khrenovamg@my.msu.ru

b A. N. Bach Institute of Biochemistry, Federal Research Centre ‘Fundamentals of Biotechnology’
of the Russian Academy of Sciences, 119071 Moscow, Russian Federation

¢ N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, 119334 Moscow,

Russian Federation

d Department of Materials Science, M. V. Lomonosov Moscow State University, 119991 Moscow,

Russian Federation

DOI: 10.1016/j.mencom.2024.10.007

We demonstrate that machine learning models trained on a
set of features obtained from QM/MM molecular dynamic
trajectories of fluorescent proteins can be used to predict the
chromophore dipole moment variation upon excitation, the
quantity related to the electronic excitation energy. Linear
regression, gradient boosting, and artificial neural network-
based models were considered using cross-validation on the
training dataset. Gradient boosting approach proved to be
the most accurate for both internal (R? = 0.77) and external
(R?=0.7) test sets.

Dipole moment variation
upon excitation (DMV)

QM/MM MD 3.0
5 fluorescent
proteins 25}
"""*'—x,;, i -
*-ﬁe?“ﬁl?- 20

E parameters of a
7 chromophore +
ESP

True values

o® Poguile
10 FY e o EYFP
Venus
Citrine

< mm = o5l S8
™~ ~_— ~ ~ e % © SHardonnay

DMV prediction 00 | [ Lo EGFP

00 05 10 15 20 25 30

Predicted values

Keywords: machine learning, fluorescent proteins, QM/MM molecular dynamics, dipole moment variation upon excitation.

Fluorescent proteins are popular tools for visualization of
processes in living cells and tissues,2 including super-resolution
microscopy.®* A chromophore group is formed autocatalytically
in the protein B-barrel from three amino acid residues of the
protein (Figure 1). The first discovered fluorescent protein GFP
has green fluorescence, but now, a fluorescent protein palette
covers whole visible regions.> One of the practical tasks in this

Figure 1 B-Barrel structure of the fluorescent protein: chromophore is
shown by sticks (upper panel). Chemical structure of the anionic GFP
chromophore; b and d notations correspond to bonds and dihedral features
utilized in machine learning models (lower panel).
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field is to modify the protein to get advanced photochemical
properties in the required spectral range. There is already a
number of works that utilize artificial intelligence (Al) for
fluorescent protein development.5-11 Alternatively, predictive
models based on physical background can be suggested.
Fluorescent proteins exhibit a second-order Stark effect, which
manifests itself in a quadratic dependence of the electronic
excitation energy on the dipole moment variation (DMV) upon
excitation.’>14 Such dependences were also demonstrated for
green and red fluorescent protein families in QM/MM based
simulations: the energy corresponding to the maximum of the
experimental absorption band demonstrates a quadratic
dependence on the calculated DMV.151® By now, such
calculations were performed exclusively for minima on the
potential energy surface. Calculation of the DMV along
molecular dynamic (MD) trajectories can derive to the DMV
distribution that can, principally, be converted to the absorption
spectrum band. To get a representative distribution, one needs to
calculate the DMV for a set of thousands points. The DMV
calculation even at the TDDFT level of theory is a time-
consuming task. In this regard, the attractive alternative is to
obtain correlations between the DMV and ground electronic
state geometry parameters that can be extracted on the fly from
the MD trajectory.

Herein, we aim to solve the regression problem of predicting
DMV values using machine learning methods (MLMs). The
dataset is composed of descriptors derived from MD simulations
with the combined quantum mechanics/molecular mechanics
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(QM/MM) potentials of model systems representing five
fluorescent proteins: EGFP, EYFP, Venus, Citrine, and
SHardonnay with the same 4-(p-hydroxybenzylidene)-5-
imidazolinone chromophore. We compare different MLMs to
discriminate the most suitable one and to reveal descriptors
mostly contributing to the DMV values.

We performed QM/MM MD simulations' for all considered
systems and obtained sets of states represented by MD frames
for each protein. As an initial set of descriptors, we identified
bond lengths in the fluorophore fragment and dihedral angles
between the planes of fluorophore rings (see Figure 1). All
geometry parameters demonstrate normal  distributions
(Figure S1 and S2, see Online Supplementary Materials). The
effect of protein was taken into account by electrostatic potential
(ESP) calculated on the chromophore atoms (Figure S3). ESP
values include contributions from all protein atoms and solvents
that could be the measure of the discrimination of a particular
protein. ESP values calculated at different atoms highly correlate
with each other (Figure S4). Therefore, we utilize only the sum
of ESP values calculated on all chromophore atoms at each MD
frame.

T Computational protocol. Full-atom model systems of 5 fluorescent
proteins were constructed using the available X-ray structures of proteins:
EGFP (PDB ID: 4EUL),'® SHardonnay (PDB ID: 3V3D)¥ and its
variant EYFP (Shardonnay with the F203Y amino acid substitution),
Venus (PDB ID: 1IMYW),?° and Citrine (PDB ID: 1HUY).2! Hydrogen
atoms were added using the Reduce program?? and manually checked.
The model system was solvated in a rectangular cell and neutralized. The
CHARMMS36 force field?32* was used to describe the chromophore and
protein macromolecule, and TIP3P% was used for water molecules.
Classical molecular dynamic simulations were performed for the initial
system equilibration in the NAMD program for 5ns.? All MD
calculations with classical and combined potentials were performed in
the canonical NPT ensemble at p=1atm and T=300 K with a 1fs
integration step. A representative frame from the classical trajectory was
selected for each model system and used as a starting structure for
molecular dynamic simulations with QM/MM potentials. The length of
each QM/MM MD trajectory was 11 ps and the first 1 ps was excluded
from the following analysis. The QM subsystem consisted of a
chromophore, neighboring amino acid residues, and water molecules of
the chromophore-containing pocket. The Kohn—Sham DFT approach was
applied for the QM part with the hybrid functional PBE0% with empirical
corrections for dispersion interactions D3%® and a cc-pvdz basis set.
Calculations of energies and forces in the QM subsystem were carried out
in the TeraChem program;2° the MM part and MD step calculations were
performed in the NAMD program using a special interface.°

TDDFT with a hybrid functional recommended for calculations of
electronic transitions ®B97X-D33! and cc-pvdz basis set was utilized to
calculate the dipole moment variation upon excitation (DMV).
Calculations of excited states were carried out using the ORCA
program.32 The DMV was calculated for the transition from the ground
singlet state to the lowest excited state with a large oscillator strength. To
calculate the dipole moment variation upon excitation, 400 frames of
QM/MM MD trajectories were selected from the last 10 ps (every 25 fs).
QM/MM calculations in the ground state and vertical electron transitions
were carried out in the electron embedding variant, i.e., the charges of the
MM environment contributed to the one-electron part of the QM
Hamiltonian.

Models were trained with three different dataset splits: on individual
proteins with a test set (20% points of the protein data); a training set of
5 proteins with a pre-selected internal test set (20% of each protein); a
training set of 4 proteins with an external test set sampling (EGFP
protein). For linear models the data was scaled through StandardScaler.
The 4-fold cross validation for all models is used. The hyperparameter
optimization was performed through GridSearchCV. Objects necessary
for training linear models were taken from the scikit-learn library.33
LGBMRegressor from LightGBM?34 and TabNetRegressor from pytorch-
tabnet® were used. Machine learning protocol code is deposited on
Zenodo, https://doi.org/10.5281/zenodo.11393469.

The dataset for each protein contains 400 points with
calculated descriptors and DMV values. This number of data
points is not enough to utilize sophisticated methods for each
individual protein. Thus, we utilize scaling and compare the
linear regression (LR) model. We perform these calculations to
demonstrate that selected features contribute to the DMV
prediction. The ESP feature proved to be irrelevant for the linear
models of the individual proteins (Figure S5). The basic model,
such as linear regression, can predict the DMV with a selected
feature set with great success (R? > 0.9) for EGFP and limited
(R2<0.5) for Venus. Application of more complex models
requires a larger dataset. Also, the unified model for prediction
of the DMV for different proteins with the same chromophore is
required. Therefore, we combined datasets for all considered
systems in a single dataset and performed the following MLM
analysis.

For a unified model based on 5 proteins, the 4-fold cross-
validation MAE for linear models is about 0.288. Approaches
with regularization do not provide any improvement on this
dataset. Two bridging bonds (bond 8, bond 9) and neighboring
bonds including two C-C bonds from the 6-membered ring
(bond 6, bond 7), and one C-C bond from the 5-membered ring
(bond 10) are the most important features of the linear model
(Figures 1, S6). This is in line with the previous observations that
for stationary points the excitation energy is mainly determined
by bridging bond lengths.131617 The ESP sum is not among
important features similarly to individual models. Gradient
boosting with the LightGBM (LGBM) yields cross-validation
MAE values of 0.242 without ESP, and a slightly smaller MAE
of 0.235 after adding the ESP feature. Further testing of the
LGBM model on the internal test set yields even better metric
values: MAE =0.23 and R? = 0.77. The internal test results for
each protein are shown in Figure 2. It demonstrates that quality
of the LGBM model prediction is not the same for all the proteins
which is probably related to the DMV distribution of individual
proteins.

The SHAP analysis of feature importance for LGBM (Figure 3)
demonstrates agreement with the linear model coefficients, but
the ESP sum feature is on the 4™ place in importance, and
improves the quality of the unified 5-protein LGBM model.

To test the ability of DMV prediction for new protein variants
with the same chromophore and amino acid substitutions in the
protein B-barrel, an external test was conducted with 4 proteins,
EYFP, Venus, Citrine, and SHardonnay, as training and validation
dataset and the EGFP data as a test. This division is of practical
interest, as the model is trained on yellow fluorescent proteins
with additional stacking interactions between the chromophore
and a side chain of an aromatic amino acid residue and the EGFP
lacks these interactions. Figure 4 depicts distributions of the
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Figure 2 LGBM model prediction for internal test sets for 5-protein
LGBM model.
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Figure 3 SHAP analysis for the unified 5-protein LGBM model.

DMV in all datasets. The DMV distribution of the EGFP is
shifted relative to other distributions. From the machine learning
side, this indicates that the DMV prediction for the EGFP from
the model trained on yellow proteins might be not accurate as the
predicting value distribution for the test protein does slightly
overlap with the distributions for the training proteins. Still, the
model was able to predict the shift of the EGFP distribution to
the larger values that correspond to the larger excitation energies
according to the quadratic Stark effect. This is in line with the
experimental observation that the absorption band of the EGFP
is shifted to the shorter wavelength region compared with yellow
proteins.

In cross-validation, LBGM has a lower MAE value of 0.25
compared to LR (MAE =0.3). On the validation set, LGBM
with the additional ESP feature did not provide any improvement
precisely because its distribution for the test protein (external
test) practically does not overlap with the ESP distribution area
of the training set (Figure S3). Nevertheless, even the LGBM
model based only on geometry features gives quite satisfactory
results on the external test set (MAE =0.29 and R?=10.70).
These predicting quantities are slightly worse compared with the
prediction for the internal dataset performed on 5-protein model
(R2=0.77). A comparison of predictions for the external and
internal test sets is illustrated in Figure 5.

We do understand that for such a small feature and dataset
artificial neural networks (ANNSs) are not the best modeling
tools, yet we try an ANN model for external set value prediction.
We employ the TabNet neural network architecture designed for
tabular learning. The cross-validation results were close to the
LGBM model (MAE =0.25), but the test MAE =0.429 and
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Figure 4 DMV distribution in training datasets.
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Figure 5 Results of LGBM test prediction. The internal test set refers to a
5-protein model. The external test set (dataset for EGFP protein) predictions
were performed with the 4-protein model trained on proteins except EGFP.

R? = 0.327 proved that such model is not applicable. Nevertheless,
we suppose that in the future, given larger datasets of protein
variants and more features attributed to local chromophore
environment, the ANN models would be more useful to predict
DMV distributions and excitation spectra for new protein
variants. Local environment features can include stacking
interactions with the chromophore (distance between centers of
rings, dihedral angle between ring plains), positions of the most
important charged residues relative to the chromophore, number
and average distance of hydrogen bonds to oxygen and nitrogen
atoms of the chromophore, etc.

To conclude, we demonstrate that machine learning
approaches based on geometry and ESP descriptors can predict
the DMV values of fluorescent proteins, which is applicable in
the field of rational design of new fluorescent proteins. We
obtained high accuracy gradient boosting model. Based on the
metrics obtained on the internal test set, such a model can be
utilized to predict additional DMV values from the available
geometry parameters and the ESP on the chromophore atoms
from molecular dynamic trajectories. This reduces the
computational cost of simulations as it requires only the ground
electronic state QM/MM MD trajectory and a relatively small
training set with explicitly calculated DMV values. Prediction of
DMV values for new proteins is also possible, still it has
potentially more challenges in both obtaining stable models and
determining their applicability domain. Now, we see promise in
introducing additional descriptors of the local environment,
which would allow us to take into account the influence of a
specific protein environment on a chromophore fragment more
accurately. Additionally, an increase in datasets will broaden the
variety of applicable machine learning methods.

This work was supported by Interdisciplinary Scientific and
Educational School of Moscow State University ‘Brain, cognitive
systems, artificial intelligence’ (#23-Sh03-04). The research was
carried out using the equipment of the shared research facilities
of HPC computing resources at Lomonosov Moscow State
University.

Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2024.10.007.
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