Home / Publications / Contrastive representation learning for spectroscopy data analysis

Contrastive representation learning for spectroscopy data analysis

Artem Pavlovich Vorozhtsov 1
Artem Pavlovich Vorozhtsov
Polina V Kitina 1
Polina V Kitina
1 Department of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
Published 2024-10-22
CommunicationVolume 34, Issue 6, 786-787
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Vorozhtsov A. P., Kitina P. V. Contrastive representation learning for spectroscopy data analysis // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 786-787.
GOST all authors (up to 50) Copy
Vorozhtsov A. P., Kitina P. V. Contrastive representation learning for spectroscopy data analysis // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 786-787.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.10.006
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.006
TI - Contrastive representation learning for spectroscopy data analysis
T2 - Mendeleev Communications
AU - Vorozhtsov, Artem Pavlovich
AU - Kitina, Polina V
PY - 2024
DA - 2024/10/22
PB - Mendeleev Communications
SP - 786-787
IS - 6
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Vorozhtsov,
author = {Artem Pavlovich Vorozhtsov and Polina V Kitina},
title = {Contrastive representation learning for spectroscopy data analysis},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Oct},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.006},
number = {6},
pages = {786--787},
doi = {10.1016/j.mencom.2024.10.006}
}
MLA
Cite this
MLA Copy
Vorozhtsov, Artem Pavlovich, and Polina V Kitina. “Contrastive representation learning for spectroscopy data analysis.” Mendeleev Communications, vol. 34, no. 6, Oct. 2024, pp. 786-787. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.006.

Keywords

machine learning
metric learning
neural network
representation learning
spectra analysis.
spectroscopy

Abstract

Metric-based representation learning showed good accuracy in identifying objects from one-dimensional spectroscopy data, robustness to small dataset size and the ability to change the data domain without fine-tuning.

References

.
Deep Convolutional Neural Networks for Raman Spectrum Recognition: A Unified Solution
Liu J., Osadchy M., Ashton L., Foster M., Solomon C.J., Gibson S.J.
The Analyst, 2017
.
Spectral Classification Based on Deep Learning Algorithms
Xu L., Xie J., Cai F., Wu J.
Electronics (Switzerland), 2021
.
Deep Learning for Raman Spectroscopy: A Review
Luo R., Popp J., Bocklitz T.
Analytica—A Journal of Analytical Chemistry and Chemical Analysis, 2022
.
Improvement in Signal-to-Noise Ratio of Liquid-State NMR Spectroscopy via a Deep Neural Network DN-Unet
Wu K., Luo J., Zeng Q., Dong X., Chen J., Zhan C., Chen Z., Lin Y.
Analytical Chemistry, 2020
.
Cross-Modal Retrieval between 13C NMR Spectra and Structures for Compound Identification Using Deep Contrastive Learning
Yang Z., Song J., Yang M., Yao L., Zhang J., Shi H., Ji X., Deng Y., Wang X.
Analytical Chemistry, 2021
.
Raman spectrum matching with contrastive representation learning
Li B., Schmidt M.N., Alstrøm T.S.
The Analyst, 2022
.
Small Molecule Accurate Recognition Technology (SMART) to Enhance Natural Products Research
Zhang C., Idelbayev Y., Roberts N., Tao Y., Nannapaneni Y., Duggan B.M., Min J., Lin E.C., Gerwick E.C., Cottrell G.W., Gerwick W.H.
Scientific Reports, 2017
.
Zero-Shot Learning—A Comprehensive Evaluation of the Good, the Bad and the Ugly
Xian Y., Lampert C.H., Schiele B., Akata Z.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019
.
Validating neural networks for spectroscopic classification on a universal synthetic dataset