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Contrastive representation learning for spectroscopy data analysis
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Metric-based representation learning showed good accuracy
in identifying objects from one-dimensional spectroscopy
data, robustness to small dataset size and the ability to
change the data domain without fine-tuning.
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Spectroscopic methods have found a wide range of applications
in chemistry and related scientific fields, but processing
spectroscopic data often takes a lot of time from researchers.
A number of machine learning-based approaches have been
proposed that allow automating the processing of spectroscopic
data?2 and solving the problem of classifying objects based on
their spectra.®* The most typical approach to solving the
classification problem is the use of neural networks with several
convolutional layers capable of efficiently extracting the spatial
structure of the input data, and subsequent fully connected
layers, the output of which generates the probabilities of an
object belonging to a particular class. This model architecture
requires a large amount of training data and does not allow
applying the model to new classes of objects without changing
the number of neurons in the output layer and fine-tuning.®

This work focuses on evaluating the benefits of using
representation learning, which shows good performance in
small-data learning tasks® and can be transferred to a new data
domain without fine-tuning.” Previously, representation learning
was used for MS/MS data analysis® and fast compound
identification from 13C NMR data.® A universal synthetic
spectroscopic dataset!® containing one-dimensional spectra of
objects of 500 different classes was used as the dataset for
training and testing the model (for example data, see Figure S1
in Online Supplementary Materials). Our spectroscopic data
identification algorithm consists of two parts. First, a
convolutional neural network (for architecture, see Figure S3)
encodes the input data into a latent representation space such that
objects of the same class are close to each other and distant from
objects of other classes (Figure 1). Then, an object from the test
dataset is fed to this neural network, and its class is determined
from the learned latent representation of the object using the
nearest neighbor algorithm.™* To achieve class separation in the
latent representation space, the neural network weights are
optimized during the training phase to minimize the Triplet Loss
function (see Online Supplementary Materials).

Previously, a neural network with identical convolutional
layer architecture was used to solve a classification problem on
the same test dataset'® and achieved an accuracy of 99.02 +
0.21%. Using the algorithm described above, we were able to
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obtain an accuracy of 99.03 + 0.27%. Moreover, training the
model on 40% of the training set with the same number of classes
yielded an accuracy of 98.95 * 0.31%, while training on only
10% of the training set yielded an accuracy of 97.64 + 0.21%.
These results show that the use of representation learning can
maintain high accuracy even when using significantly fewer
training samples than required by the classical multiclass
classification algorithm. We also analyzed how effective it is to
use a pre-trained neural network to deal with classes not
encountered during training. For this purpose, we trained the
model on the objects of 400 out of 500 classes in the training set,
and then tested it on the remaining 100 classes without fine-
tuning. This resulted in an accuracy of 99.667%. In contrast to
this, a conventional classification algorithm cannot be applied to
a new data domain without fine-tuning and modifying the last
fully connected layer.

An important feature of latent representations is the
meaningfulness of arithmetic operations performed on them. In
particular, it was found that the normalized latent representation
of several spectra superimposed on each other (which simulates
a mixture of compounds in a real experiment) is close to the
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Figure 1 Distribution of pairwise distance between elements of the same
classes (positive) and elements of different classes (negative).
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normalized sum of the latent representations of each spectrum
separately. This property can be useful for analyzing spectra
containing signals from several components simultaneously.

Based on the described property, we proposed a simple
algorithm for processing the spectra of such ‘mixtures’ by means
of representation learning. At the first step of this algorithm,
latent representations of each class of objects are formed. Then,
to form latent representations of mixtures, the algorithm
calculates the normalized sums of latent representations of
classes for all their unique combinations. After that, a test
‘mixture’ is fed to the neural network, and the nearest neighbor
is determined for the obtained latent representation of the
‘mixture’. The class of the mixture (i.e., the list of classes whose
objects are included in the mixture) is determined by the class of
the found nearest neighbor. The disadvantage of this algorithm is
the significant memory costs for processing mixtures of a large
number of elements, but its high accuracy (Table 1) makes it
promising for analyzing spectra.

To identify the limitations of the model, it was also tested on
a specially prepared dataset'® containing objects of 27 classes
divided into three groups: (1) classes that differ from each other
by low-intensity peaks; (2) classes where the peak positions
differ slightly from each other; (3) classes with the same peak
positions but different intensities. On this dataset, the accuracy
of our algorithm was 53.08%, while the benchmark accuracy
was 52.47%. A more detailed analysis (Figure S6) showed that
the algorithm is able to accurately predict the classes of the
second group, but not the first and third. Apparently, the limited
classification accuracy on this dataset is due to the low ability of
the used convolutional network to handle spectra with close peak
intensities and does not depend on the way it is trained.

Table 1 Accuracy of prediction algorithms.

Accuracy (%)

Number of correct Identification

predictions? QL_Jaternary Te_rnary Bi_nary of individual
mixture mixture mixture compound

1 99.3 99.6 99.2 99.0

2 96.0 96.6 92.0 -

3 84.8 78.8 - -

4 59.4 - - -

@The number of mixture components whose classes were predicted
correctly.

The results show that representation learning is a promising
tool for analyzing spectroscopic data due to the low training data
quantity requirements and the ability to be used on new data
domains without fine-tuning.
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Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2024.10.006.
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