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Spectroscopic methods have found a wide range of applications 
in chemistry and related scientific fields, but processing 
spectroscopic data often takes a lot of time from researchers.  
A number of machine learning-based approaches have been 
proposed that allow automating the processing of spectroscopic 
data1,2 and solving the problem of classifying objects based on 
their spectra.3,4 The most typical approach to solving the 
classification problem is the use of neural networks with several 
convolutional layers capable of efficiently extracting the spatial 
structure of the input data, and subsequent fully connected 
layers, the output of which generates the probabilities of an 
object belonging to a particular class. This model architecture 
requires a large amount of training data and does not allow 
applying the model to new classes of objects without changing 
the number of neurons in the output layer and fine-tuning.5

This work focuses on evaluating the benefits of using 
representation learning, which shows good performance in 
small-data learning tasks6 and can be transferred to a new data 
domain without fine-tuning.7 Previously, representation learning 
was used for MS/MS data analysis8 and fast compound 
identification from 13C NMR data.9 A universal synthetic 
spectroscopic dataset10 containing one-dimensional spectra of 
objects of 500 different classes was used as the dataset for 
training and testing the model (for example data, see Figure S1 
in Online Supplementary Materials). Our spectroscopic data 
identification algorithm consists of two parts. First, a 
convolutional neural network (for architecture, see Figure S3) 
encodes the input data into a latent representation space such that 
objects of the same class are close to each other and distant from 
objects of other classes (Figure 1). Then, an object from the test 
dataset is fed to this neural network, and its class is determined 
from the learned latent representation of the object using the 
nearest neighbor algorithm.11 To achieve class separation in the 
latent representation space, the neural network weights are 
optimized during the training phase to minimize the Triplet Loss 
function (see Online Supplementary Materials).

Previously, a neural network with identical convolutional 
layer architecture was used to solve a classification problem on 
the same test dataset10 and achieved an accuracy of 99.02 ± 
0.21%. Using the algorithm described above, we were able to 

obtain an accuracy of 99.03 ± 0.27%. Moreover, training the 
model on 40% of the training set with the same number of classes 
yielded an accuracy of 98.95 ± 0.31%, while training on only 
10% of the training set yielded an accuracy of 97.64 ± 0.21%. 
These results show that the use of representation learning can 
maintain high accuracy even when using significantly fewer 
training samples than required by the classical multiclass 
classification algorithm. We also analyzed how effective it is to 
use a pre-trained neural network to deal with classes not 
encountered during training. For this purpose, we trained the 
model on the objects of 400 out of 500 classes in the training set, 
and then tested it on the remaining 100 classes without fine-
tuning. This resulted in an accuracy of 99.667%. In contrast to 
this, a conventional classification algorithm cannot be applied to 
a new data domain without fine-tuning and modifying the last 
fully connected layer.

An important feature of latent representations is the 
meaningfulness of arithmetic operations performed on them. In 
particular, it was found that the normalized latent representation 
of several spectra superimposed on each other (which simulates 
a mixture of compounds in a real experiment) is close to the 
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Figure  1  Distribution of pairwise distance between elements of the same 
classes (positive) and elements of different classes (negative).
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normalized sum of the latent representations of each spectrum 
separately. This property can be useful for analyzing spectra 
containing signals from several components simultaneously.

Based on the described property, we proposed a simple 
algorithm for processing the spectra of such ‘mixtures’ by means 
of representation learning. At the first step of this algorithm, 
latent representations of each class of objects are formed. Then, 
to form latent representations of mixtures, the algorithm 
calculates the normalized sums of latent representations of 
classes for all their unique combinations. After that, a test 
‘mixture’ is fed to the neural network, and the nearest neighbor 
is determined for the obtained latent representation of the 
‘mixture’. The class of the mixture (i.e., the list of classes whose 
objects are included in the mixture) is determined by the class of 
the found nearest neighbor. The disadvantage of this algorithm is 
the significant memory costs for processing mixtures of a large 
number of elements, but its high accuracy (Table 1) makes it 
promising for analyzing spectra.

To identify the limitations of the model, it was also tested on 
a specially prepared dataset10 containing objects of 27 classes 
divided into three groups: (1) classes that differ from each other 
by low-intensity peaks; (2) classes where the peak positions 
differ slightly from each other; (3) classes with the same peak 
positions but different intensities. On this dataset, the accuracy 
of our algorithm was 53.08%, while the benchmark accuracy 
was 52.47%. A more detailed analysis (Figure S6) showed that 
the algorithm is able to accurately predict the classes of the 
second group, but not the first and third. Apparently, the limited 
classification accuracy on this dataset is due to the low ability of 
the used convolutional network to handle spectra with close peak 
intensities and does not depend on the way it is trained.

The results show that representation learning is a promising 
tool for analyzing spectroscopic data due to the low training data 
quantity requirements and the ability to be used on new data 
domains without fine-tuning.
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Table  1  Accuracy of prediction algorithms.

Number of correct 
predictionsa

Accuracy (%)

Quaternary 
mixture

Ternary 
mixture

Binary 
mixture

Identification 
of individual 
compound

1 99.3 99.6 99.2 99.0

2 96.0 96.6 92.0 –

3 84.8 78.8 – –

4 59.4 – – –

a The number of mixture components whose classes were predicted 
correctly.


