
S1

Electronic supplementary materials Mendeleev Commun., 2024, 34, 786–787

Contrastive representation learning for spectroscopy data analysis

Artem P. Vorozhtsov and Polina V. Kitina

Benchmark dataset
The dataset contains synthetic spectra for 500 different classes, with each class represented by 50 objects
in the training set, 10 objects in the validation set, and 9 objects in the test set. In our work, the model
was trained on a reduced training set (20 or 5 objects for each of the 500 classes), the validation and test
sets were used in this paper without changing the number of objects. Each synthetic spectrum is a one-
dimensional array of 5000 elements. Figure S1 shows an example spectrum from the original dataset.
The horizontal axis corresponds to the position of the signal and the vertical axis corresponds to its
intensity. Objects of the same class differ from each other by shifting the position of peaks, changing
their intensities, as well as the width of peaks, which corresponds to the errors in recording real spectra.

Figure S1 Sample data for training set

Data preprocessing consists of normalizing each vector of length 5000 by the maximum element of the
vector: in this way data in the range [0; 1] are obtained. During training, normally distributed noise is
added to spectra as data augmentation. An example of the data after processing is shown in Fig. S2.

Figure S2 Data after preprocessing

S2

Neural network architecture and its training process
A convolutional neural network (CNN) with 1D convolutions is used to extract high-level features
because there are correlations between neighboring points in the spectrum. In addition, convolutional
neural networks have translational invariance and therefore can respond adequately to peak position
shifts. The architecture of the neural network is shown in Fig. S3.

Figure S3 CNN architecture

The model consists of three convolution layers with specified values of the number of filters (16-32-64)
and convolution kernel size (21-11-5), each convolution layer is followed by a pooling and a batch-
normalization layer, the activation function between convolutional blocks of the neural network is
LeakyReLU. After the convolutional layers, there is a flatten layer and a linear layer that translates the
vector into the latent_dim dimension space. The model outputs are normalized. The result is the points
of the latent representation space distributed on a unit sphere in this space. The dimensionality of the
latent space was 64, this value was determined using the Optuna hyperparameter fitting libraryS1. It
should be noted that increasing number of convolutional or linear layers in this architecture leads to fast
overfitting.
A detailed description of all used layers of the neural network architecture is available in the PyTorchS2
framework documentation.
To train the neural network, the preprocessed data are divided into triples: the anchor element is the
spectrum of an object from the training set; the positive element is another example of the spectrum of
an object of the same class as the anchor element; the negative element is the spectrum of an object of a
class different from the anchor element. The spectra for the positive and negative element are chosen
randomly.
TripletMarginLoss with cosine distance was used as the loss function:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = max (0, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) + 1)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) = 1 − cos (𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜, 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐_𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) = 1 − cos (𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜, 𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)

where anchor is the latent representation of the anchor element, positive and negative are the latent
representations of positive and negative objects, respectively.
Hard example mining was used in the training. For this purpose, we optimized the loss function averaged
only over “positive triplets”, which included hard triplets and part of semi-hard triplets (fig. S4).

S3

Figure S4 Hard example mining. A is anchor, P is positive element, Ni – negative elements

The AdamW optimizer was used to optimize the weights of the neural network, the initial value of the
learning rate (lr) was 5∙10-3, every 4 epochs of training lr was reduced by a factor of 2. Training was
performed for 20 epochs. During training, there was a decrease in the proportion of complex examples
(Fig. S5 (a)) and in the value of the loss function on these complex examples (Fig. S5 (b)). Model training
was performed on a single NVIDIA Tesla T4 in Google Colab.

Figure S5 Training curve for fraction of positive triplets and loss function

After training the neural network, the optimal value of the number of nearest neighbors (k) in the k-NN
algorithm was selected. For this purpose, latent representations of the validation set objects were
obtained, for which the class was predicted using the sklearn.neighbors.KNeighborsClassifier
algorithmS3 with different values of the number of nearest neighbors. The optimal value of k was taken
as the one that gives the maximum classification accuracy on the validation dataset. This value of k was
used to classify the test set.
Training, validation and testing of the algorithm were performed 5 times with different initializations of
random parameters, then the prediction accuracy on the test set was averaged.

S4

Challenging dataset
The challenging dataset consists of spectra from 27 different classes. Each class is represented by 50
examples in the training sample, 10 examples in the validation sample, and 6 examples in the test sample.
All classes are grouped into three groups: (1) classes that are characterized by peaks with low intensity,
(2) classes in which the position of the peaks is slightly different from each other, (3) classes in which
the position of the peaks is the same but their intensity is different. Training, validation and testing of the
algorithm were performed similarly to the above procedure.
To identify patterns in the data that cause the algorithm to have the highest error, it was tested separately
on each group of classes. Figure S6 shows the projections of the latent representation space onto the two-
dimensional plane obtained by principal component analysis. The more complete separation of the
classes of the second group can be clearly seen compared to the first and third groups, which is also
consistent with the prediction accuracy of the algorithm on these groups separately.

Figure S6 PCA analysis of latent space for challenging dataset

Processing mixtures of objects of different classes
To train the neural network, the preprocessed data are divided into triples: the anchor element is the
spectrum of an object from the training set; the positive element is the normalized sum of another object
of the same class as the anchor element and an element of another class; the negative element is the
normalized sum of spectra of objects of two classes other than the anchor class. The spectra for the
positive and negative element are chosen randomly.
To test the model, the following steps of the algorithm are performed:

1) Embeddings of spectra for each individual object class are generated using a pretrained neural
network;

2) Within a class, the embeddings are averaged to obtain a vector characterizing this class of objects
“on average”. After averaging the embeddings are normalized;

3) Embeddings of different classes are stacked with each other to create all possible unique
embeddings of mixtures with a given number of elements. After stacking, the embeddings are
normalized. The array of these embeddings is passed for training to the k-NN algorithm with k =
1;

4) Embeddings are formed for the spectra of mixtures from the test sample.
5) Using the k-NN algorithm trained in step 3, the composition of the mixtures is determined from

the embeddings obtained in step 4.

Metrics

The quality of model’s predictions was measured by the value of accuracy, that defined as the fraction
of correctly classified samples in test set. When the model was tested on individual objects, we used the
built-in KNeighborsClassifier.score method. To test the model on mixtures, we wrote a function that
determines the number of matching elements in the array of predicted classes included in the mixture

S5

and the array of classes actually included in the mixture. This function returned an array of accuracy
values, with each value being the accuracy of identifying 1, 2, 3, or all 4 compounds in the mixture.

Code availability
All code and data are available on github: https://github.com/ArtemVorozhtsov/Contrastive-
representation-learning-for-spectroscopy-data-analysis

References
S1 T. Akiba, S. Sano, T. Yanase, T. Ohta and M. Koyama, 25th ACM SIGKDD international

conference on knowledge discovery & data mining, Anchorage, 2019, 2623;
https://doi.org/10.1145/3292500.3330701.

S2 A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S.
Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chintala, Advances in Neural Information
Processing Systems 32, Vancouver, 2019, 8024; https://doi.org/10.48550/arXiv.1912.01703.

S3 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M.
Perrot and É. Duchesnay, J. Mach. Learn. Res., 2011, 12, 2825;
https://doi.org/10.48550/arXiv.1201.0490.

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.48550/arXiv.1912.01703
https://doi.org/10.48550/arXiv.1201.0490

