Keywords
asymmetric hydrogenation
catalytic cycles
chiral bisphosphines.
DFT computations
Ni complexes
reaction mechanisms
Abstract
Initial stages of two representative Ni-catalysed asymmetric hydrogenations were investigated computationally featuring the formation of the active catalytic species [R,R-BenzP*NiH]+ from R,R-BenzP*Ni(OAc)2 and [S,S-Ph-BPENiH]+ from S,S-Ph-BPENi(OAc)2. Among several computed pathways the most feasible is dissociation of acetic acid from (ligand)NiH(HOAc) formed by H2 metathesis in the (ligand)Ni(H2)(OAc)2. The rate-limiting step is the initial metathesis of H2 requiring high effective activation barriers of 28.3 and 26.6 kcal mol-1, in accord with high pressures and elevated temperatures essential for the Ni-catalysed hydrogenations.
Funders
Russian Science Foundation
24-43-00011
References
.
Etayo P., Vidal-Ferran A.
Chemical Society Reviews,
2013
.
Liu D., Li B., Chen J., Gridnev I.D., Yan D., Zhang W.
Nature Communications,
2020
.
Zuo W., Prokopchuk D.E., Lough A.J., Morris R.H.
ACS Catalysis,
2015
.
Xu H., Yang P., Chuanprasit P., Hirao H., Zhou J.S.
Angewandte Chemie - International Edition,
2015
.
Friedfeld M.R., Zhong H., Ruck R.T., Shevlin M., Chirik P.J.
Science,
2018
.
Sues P.E., Lough A.J., Morris R.H.
Organometallics,
2011
.
Imamoto T., Tamura K., Zhang Z., Horiuchi Y., Sugiya M., Yoshida K., Yanagisawa A., Gridnev I.D.
Journal of the American Chemical Society,
2012
.
Wu S., Zhang T., Chung L.W., Wu Y.
Organic Letters,
2019
.
Cabré A., Verdaguer X., Riera A.
Chemical Reviews,
2021
.
Hu Y., Zhang Z., Zhang J., Liu Y., Gridnev I.D., Zhang W.
Angewandte Chemie - International Edition,
2019
.
Zhang L., Wang Z., Han Z., Ding K.
Angewandte Chemie - International Edition,
2020
.
Liu C., Wang M., Liu S., Wang Y., Peng Y., Lan Y., Liu Q.
Angewandte Chemie - International Edition,
2021
.
Hu Y., Zhang Z., Liu Y., Zhang W.
Angewandte Chemie - International Edition,
2021
.
Xu Y., Liu D., Deng Y., Zhou Y., Zhang W.
Angewandte Chemie - International Edition,
2021
.
Vyas V.K., Bhanage B.M.
Organic Chemistry Frontiers,
2016
.
Chong E., Qu B., Zhang Y., Cannone Z.P., Leung J.C., Tcyrulnikov S., Nguyen K.D., Haddad N., Biswas S., Hou X., Kaczanowska K., Chwalba M., Tracz A., Czarnocki S., Song J.J., et. al.
Chemical Science,
2019
.
Zhao Y., Zhang L., Pu M., Lei M.
Dalton Transactions,
2021
.
Luan P., Liu Y., Li Y., Chen R., Huang C., Gao J., Hollmann F., Jiang Y.
Green Chemistry,
2021
.
Li B., Chen J., Liu D., Gridnev I.D., Zhang W.
Nature Chemistry,
2022
.
Oates C.L., Goodfellow A.S., Bühl M., Clarke M.L.
Angewandte Chemie - International Edition,
2022
.
Wei H., Chen H., Chen J., Gridnev I.D., Zhang W.
Angewandte Chemie - International Edition,
2023
.
Knowles W.S.
Angewandte Chemie - International Edition,
2002
.
Chen W., Spindler F., Pugin B., Nettekoven U.
Angewandte Chemie - International Edition,
2013
.
Zhang X., Huang K., Hou G., Cao B., Zhang X.
Angewandte Chemie - International Edition,
2010
.
Liu L., Bai Y., Li X., Yu C., Zhou Y.
Chemical Science,
2023
.
Oates C.L., Goodfellow A.S., Buehl M., Clarke M.L.
Green Chemistry,
2023
.
Gridnev I.D.
International Journal of Molecular Sciences,
2023
.
Guan J., Chen J., Luo Y., Guo L., Zhang W.
Angewandte Chemie - International Edition,
2023
.
Lan S., Huang H., Liu W., Xu C., Lei X., Dong W., Liu J., Yang S., Cotman A.E., Zhang Q., Fang X.
Journal of the American Chemical Society,
2024
.
Wen Y., Fernández-Sabaté M., Lledós A., Sciortino G., Eills J., Marco-Rius I., Riera A., Verdaguer X.
Angewandte Chemie,
2024
.
Wei H., Luo Y., Li J., Chen J., Gridnev I.D., Zhang W.
Journal of the American Chemical Society,
2024