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Transition metal catalysed asymmetric hydrogenation has 
become a powerful method for creation of chiral compounds that 
can be further used for design and synthesis of chiral drugs and 
new candidates for various applications requiring enantio­
merically pure compounds.1,2 Historically the method was 
developed based on the application of chiral complexes of noble 
metals such as Rh,3–7 Ru,8–10 Ir11,12 and Pd.13,14 Although new 
reactions applying noble metals continue to appear, the modern 
trend shifted to wider use of the complexes of earth abundant 
(and accordingly much cheaper) metals like Fe,15,16 Ni,17,18 
Co,19–21 Mn22 or Cu.23 Additional bonus making the use of these 
metals is their relative environmental benignity.

It is a common knowledge that in such a sophisticated 
technology like asymmetric hydrogenation, understanding of the 
reaction mechanisms including the details of the catalytic cycles 
is essential for successful development of new effective catalysts 
and proper adjustment of the reaction conditions. Following 
successful developments in this field for Ru, Rh, Ir and Pd 
catalysts, important mechanistic results were recently published 
for asymmetric hydrogenation using Co (propene24 and 
enamide25), Ni (variously substituted C=N bonds),26–28 Mn 
(acetophenone, heterocycles),28–31 Cu (conjugated pentenones)32 
catalysts. However, further research in this area is strongly wanted.

In particular, the structure of the active catalytic species is 
relatively elusive compared to the noble metal catalysed 
asymmetric hydrogenations due to greater number of possibilies, 
involvement of paramagnetic species and other technical 
difficulties. Since the publication of experimental and 
computational studies of the Pd case identifying a [P2Pd–H]+ 
complex as the most probable catalyst in the asymmetric 
hydrogenation, it has been (not unreasonably) assumed that 
similar species could play the same role in earth abundant 

metals  catalysed hydrogenations. More recently published 
computational study of the early stages of the Co-catalysed 
asymmetric hydrogenations confirmed the early assumptions.33

In this work we investigate the mechanism of generation of 
the active catalytic species in Ni-catalysed asymmetric 
hydrogenation (for computational methods, see Online 
Supplementary Materials). The Ni complexes of 
R,R-But-BenzP*  and S,S-Ph-BPE (Scheme 1) were chosen for 
this study since the corresponding catalytic cycles and the 
mechanisms of enantioselection were recently published.27,28

Unlike the reactions catalysed by chiral complexes of noble 
metals, Ni is often introduced to the system in a form of hydrated 
salt, e.g. Ni(OAc)2 · 4 H2O accompanied with equimolar amount 
of the ligand. Therefore, we started our analysis from the chelate 
complexes which can easily form under these conditions (see 
Scheme 1). These complexes react with dihydrogen yielding 
adducts of 1a,b with H2. Metathesis of dihydrogen proceeds 
through the TS1a,b and after dissociation of the weakly bound 
in 3a,b acetic acid, leads to the Ni hydrides 4a,b. This is the 
rate-limiting step of the initial stage of the reaction with 
computed effective Gibbs free activation energies of 28.3 and 
26.6 kcal mol–1, respectively (see Scheme 1). Metathesis of 
another molecule of dihydrogen through TS2a,b followed by 
dissociation of acetic acid yields neutral Ni dihydrides 7a,b. 
However, the latter species are unlikely intermediates in the real 
catalytic cycles, because the TS2a,b are significantly higher in 
energy than the TS1a,b, and the formation of 7a,b is strongly 
endergonic. We also considered a possibility of the generation 
of cationic species from the relatively stable neutral hydride 
complexes 4a,b via dissociation of the acetate anion. However, 
these pathways were computed to be unreasonably high in 
energy.
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Initial stages of two representative Ni-catalysed asymmetric 
hydrogenations were investigated computationally featuring 
the formation of the active catalytic species 
[R,R-BenzP*NiH]+  from R,R-BenzP*Ni(OAc)2 and 
[S,S-Ph-BPENiH]+ from S,S-Ph-BPENi(OAc)2. Among 
several computed pathways the most feasible is dissociation 
of acetic acid from (ligand)NiH(HOAc) formed by H2 
metathesis in the (ligand)Ni(H2)(OAc)2. The rate-limiting 
step is the initial metathesis of H2 requiring high effective 
activation barriers of 28.3 and 26.6 kcal mol–1, in accord 
with high pressures and elevated temperatures essential for 
the Ni-catalysed hydrogenations. 
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Therefore, we decided to check if protonation of 4a,b could open 
the door for generation of cationic Ni species. As can be seen from 
Scheme 1, acetic acid can be formed in the reaction mixture. 
Moreover, it has been found that addition of acid (either added or 
formed during hydrogenation) is essential for the smooth 
hydrogenation of oximes catalysed by the S,S-Ph-BPE Ni complex.26

The computed pathways resulting in the formation of cationic 
Ni complexes 9a,b are shown in Scheme 2. Protonation of 4a,b 
yields cationic complexes 8a,b. Then elimination of acetic acid 
via TS3a yields the active catalyst 9a. In the case of the 8b the 
same reaction proceeds barrierlessly yielding complex 8' b 
stabilized by h3 coordination of one of the phenyl groups of the 
S,S-Ph-BPE ligand (Figure 1). Elimination of acetic acid from 
8'b provides 9b. Interestingly, these computations predict a 
milder formation of 9b compared to 9a (see Scheme 2). The 
hydride in 9b is more effectively stabilized via intramolecular 
CH/p contacts that makes it 4.4 kcal mol–1 more stable compared 
to 8b. On the other hand, 9a is only 1.3 kcal mol–1 more stable 
than 8a. This may be a reason for better performance of the 
S,S-Ph-BPE Ni complex compared to the R,R-But-BenzP* Ni 
complex in the asymmetric hydrogenation of oximes.26

In conclusion, cationic nickel(ii) monohydride complexes 
9a,b, the true catalysts in the Ni-catalysed asymmetric 
hydrogenations, can be generated via the protonation of acetate 
complexes 4a,b. The rate-limiting step for the catalyst 
generation is the metathesis of dihydrogen in a 
(ligand)Ni(H2)(OAc)2 molecule. Computational results are in 
accordance with the experimentally observed higher reactivity of 
the S,S-Ph-BPE Ni complex compared to the R,R-But-BenzP* Ni 
complex in the asymmetric hydrogenation of acetophenone 
oxime.26
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Online Supplementary Materials
Supplementary data associated with this article can be found 

in the online version at doi: 10.71267/mencom.7818.
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Scheme  2  Possible pathways leading to the formation of 9a,b. The values 
standing near the codes are in kcal mol–1.
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Figure 1 Optimized structures of the active catalysts 9a and 9b.
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Scheme  1  Computed Gibbs free energy profiles for the transformation of the nickel(ii) diacetate complexes 1a,b to nickel(ii) dihydride complexes 7a,b.
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