Home / Publications / Nickel nanoparticles formation during Ni catalyst activation revealed by identical location electron microscopy

Nickel nanoparticles formation during Ni catalyst activation revealed by identical location electron microscopy

Anton Eduardovich Dzhusupov 1, 2
Anton Eduardovich Dzhusupov
Evgeniy Olegovich Pentsak 1
Evgeniy Olegovich Pentsak
2 D.Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
Published 2024-10-22
CommunicationVolume 34, Issue 6, 899-901
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Dzhusupov A. E., Pentsak E. O. Nickel nanoparticles formation during Ni catalyst activation revealed by identical location electron microscopy // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 899-901.
GOST all authors (up to 50) Copy
Dzhusupov A. E., Pentsak E. O. Nickel nanoparticles formation during Ni catalyst activation revealed by identical location electron microscopy // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 899-901.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.10.041
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.041
TI - Nickel nanoparticles formation during Ni catalyst activation revealed by identical location electron microscopy
T2 - Mendeleev Communications
AU - Dzhusupov, Anton Eduardovich
AU - Pentsak, Evgeniy Olegovich
PY - 2024
DA - 2024/10/22
PB - Mendeleev Communications
SP - 899-901
IS - 6
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Dzhusupov,
author = {Anton Eduardovich Dzhusupov and Evgeniy Olegovich Pentsak},
title = {Nickel nanoparticles formation during Ni catalyst activation revealed by identical location electron microscopy},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Oct},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.041},
number = {6},
pages = {899--901},
doi = {10.1016/j.mencom.2024.10.041}
}
MLA
Cite this
MLA Copy
Dzhusupov, Anton Eduardovich, and Evgeniy Olegovich Pentsak. “Nickel nanoparticles formation during Ni catalyst activation revealed by identical location electron microscopy.” Mendeleev Communications, vol. 34, no. 6, Oct. 2024, pp. 899-901. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.041.

Keywords

electron microscopy
heterogeneous catalysis
hydrogenation
identical location electron microscopy (IL EM).
morphology
nanoparticles
nickel
selected area microscopy

Abstract

Formation of metallic nickel nanoparticles was observed during nickel catalyst activation in hydrogen flow at high temperature. The scale of change in catalyst morphology was determined via identical location electron microscopy.

References

.
Trends in the Usage of Bidentate Phosphines as Ligands in Nickel Catalysis.
Clevenger A.L., Stolley R.M., Aderibigbe J., Louie J.
Chemical Reviews, 2020
.
Recent developments in nickel-catalyzed intermolecular dicarbofunctionalization of alkenes
Derosa J., Apolinar O., Kang T., Tran V.T., Engle K.M.
Chemical Science, 2020
.
Catalytic decomposition of methane to produce hydrogen: A review
Fan Z., Weng W., Zhou J., Gu D., Xiao W.
Journal of Energy Chemistry, 2021
.
Synthesis of Ultradispersed Nickel Particles by Reduction of High-Loaded NiO−SiO2 Systems Prepared by Heterophase Sol−Gel Method
Ermakova M.A., Ermakov D.Y., Cherepanova S.V., Plyasova L.M.
Journal of Physical Chemistry B, 2002
.
High-Loaded Nickel Based Sol–Gel Catalysts for Methylcyclohexane Dehydrogenation
Gulyaeva Y.K., Alekseeva (Bykova) M.V., Ermakov D.Y., Bulavchenko O.A., Zaikina O.O., Yakovlev V.A.
Catalysts, 2020
.
Visualizing the Cu/Cu2O Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy
LaGrow A.P., Ward M.R., Lloyd D.C., Gai P.L., Boyes E.D.
Journal of the American Chemical Society, 2016
.
Ni-Based Catalysts for the Hydrotreatment of Fast Pyrolysis Oil
Ardiyanti A.R., Bykova M.V., Khromova S.A., Yin W., Venderbosch R.H., Yakovlev V.A., Heeres H.J.
Energy & Fuels, 2016
.
High-Loading Nickel Phosphide Catalysts Supported on SiO2–TiO2 for Hydrodeoxygenation of Guaiacol
Zhang P., Sun Y., Lu M., Zhu J., Li M., Shan Y., Shen J., Song C.
Energy & Fuels, 2019
.
Single Atom Dynamics in Chemical Reactions
Boyes E.D., LaGrow A.P., Ward M.R., Mitchell R.W., Gai P.L.
Accounts of Chemical Research, 2020
.
Promoting dry reforming of methane via bifunctional NiO/dolomite catalysts for production of hydrogen-rich syngas
Shamsuddin M.R., Asikin-Mijan N., Marliza T.S., Miyamoto M., Uemiya S., Yarmo M.A., Taufiq-Yap Y.H.
RSC Advances, 2021
.
Temperature programmed reduction of silica supported nickel catalysts
Afzal M., Theocharis C.R., Karim S.
Colloid and Polymer Science, 1993
.
Cyclohexane dehydrogenation on a nickel catalyst: Kinetics and catalyst fouling
Al-Ayed O.S., Kunzru D.
Journal of Chemical Technology and Biotechnology, 2007
.
Methane decomposition over high-loaded Ni-Cu-SiO2 catalysts
Li J., Zhao L., He J., Dong L., Xiong L., Du Y., Yang Y., Wang H., Peng S.
Fusion Engineering and Design, 2016
.
Kinetic study of thermocatalytic decomposition of methane over nickel supported catalyst in a fluidized bed reactor
Hadian M., Marrevee D.P., Buist K.A., Reesink B.H., Bos A.N., Bavel A.P., Kuipers J.A.
Chemical Engineering Science, 2022
.
Stanković M., Krstić J., Gabrovska M., Radonjić V., Nikolova D., Lončarević D., Jovanović D.
2017
.
Egorysheva A.V., Plukchi K.R., Golodukhina S.V., Liberman E.Y., Ellert O.G.
Mendeleev Communications, 2023
.
Effect of potassium in catalysts obtained by the solution combustion synthesis for co-production of hydrogen and carbon nanofibers by catalytic decomposition of methane
Chudakova M.V., Popov M.V., Korovchenko P.A., Pentsak E.O., Latypova A.R., Kurmashov P.B., Pimenov A.A., Tsilimbaeva E.A., Levin I.S., Bannov A.G., Kleymenov A.V.
Chemical Engineering Science, 2024
.
Kustov A.L., Aymaletdinov T.R., Shesterkina A.A., Kalmykov K.B., Pribytkov P.V., Mishin I.V., Dunaev S.F., Kustov L.M.
Mendeleev Communications, 2024