Home / Publications / Silicate-substituted hydroxyapatite bioceramics fabrication from the amorphous powder precursor obtained from the silicate-containing solutions

Silicate-substituted hydroxyapatite bioceramics fabrication from the amorphous powder precursor obtained from the silicate-containing solutions

Daniil Olegovich Golubchikov
Tat'yana Viktorovna Safronova 1, 3
Tat'yana Viktorovna Safronova
Vladimir Alekseevich Podlyagin 1
Vladimir Alekseevich Podlyagin
Tatiana Borisovna Shatalova 1, 3
Tatiana Borisovna Shatalova
Irina Valer'evna Kolesnik 1, 3
Irina Valer'evna Kolesnik
Valerii Ivanovich Putlayev 1, 3
Valerii Ivanovich Putlayev
1 Department of Materials Science, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
2 I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
3 Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
Published 2024-10-22
CommunicationVolume 34, Issue 6, 847-849
2
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Golubchikov D. O. et al. Silicate-substituted hydroxyapatite bioceramics fabrication from the amorphous powder precursor obtained from the silicate-containing solutions // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 847-849.
GOST all authors (up to 50) Copy
Golubchikov D. O., Safronova T. V., Podlyagin V. A., Shatalova T. B., Kolesnik I. V., Putlayev V. I. Silicate-substituted hydroxyapatite bioceramics fabrication from the amorphous powder precursor obtained from the silicate-containing solutions // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 847-849.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.10.025
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.025
TI - Silicate-substituted hydroxyapatite bioceramics fabrication from the amorphous powder precursor obtained from the silicate-containing solutions
T2 - Mendeleev Communications
AU - Golubchikov, Daniil Olegovich
AU - Safronova, Tat'yana Viktorovna
AU - Podlyagin, Vladimir Alekseevich
AU - Shatalova, Tatiana Borisovna
AU - Kolesnik, Irina Valer'evna
AU - Putlayev, Valerii Ivanovich
PY - 2024
DA - 2024/10/22
PB - Mendeleev Communications
SP - 847-849
IS - 6
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Golubchikov,
author = {Daniil Olegovich Golubchikov and Tat'yana Viktorovna Safronova and Vladimir Alekseevich Podlyagin and Tatiana Borisovna Shatalova and Irina Valer'evna Kolesnik and Valerii Ivanovich Putlayev},
title = {Silicate-substituted hydroxyapatite bioceramics fabrication from the amorphous powder precursor obtained from the silicate-containing solutions},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Oct},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.025},
number = {6},
pages = {847--849},
doi = {10.1016/j.mencom.2024.10.025}
}
MLA
Cite this
MLA Copy
Golubchikov, Daniil Olegovich, et al. “Silicate-substituted hydroxyapatite bioceramics fabrication from the amorphous powder precursor obtained from the silicate-containing solutions.” Mendeleev Communications, vol. 34, no. 6, Oct. 2024, pp. 847-849. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.025.

Keywords

amorphous calcium phosphate
bioceramics
bone tissue engineering
calcium silicate
hydroxyapatite
mixed-anionic solution
silicate-substituted hydroxyapatite.

Abstract

The mixed-anionic solution synthesis was applied to obtain X-ray amorphous powder precursor of silicon-substituted hydroxyapatite (Si-HAp) for macroporous bioceramics fabrication. Proposed technique was proven to provide small particle size up to 1 µm, as well as homogeneous components distribution in the final Si-HAp ceramics. A possible pathway of the Si-HAp formation under gradual heating up to 1000 °C was discussed.

References

.
Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite
Sofronia A.M., Baies R., Anghel E.M., Marinescu C.A., Tanasescu S.
Materials Science and Engineering C, 2014
.
Powders Synthesized from Calcium Acetate and Mixed-Anionic Solutions, Containing Orthophosphate and Carbonate Ions, for Obtaining Bioceramic
Safronova T.V., Putlyaev V.I., Filippov Y.Y., Knot’ko A.V., Klimashina E.S., Peranidze K.K., Evdokimov P.V., Vladimirova S.A.
Glass and Ceramics (English translation of Steklo i Keramika), 2018
.
Strontium and silicate co-substituted hydroxyapatite: Mechanochemical synthesis and structural characterization
Bulina N.V., Chaikina M.V., Prosanov I.Y., Dudina D.V.
Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020
.
Bonding mechanisms at the interface of ceramic prosthetic materials
Hench L.L., Splinter R.J., Allen W.C., Greenlee T.K.
Journal of Biomedical Materials Research, 1971
.
Regulation of Osteogenic Markers at Late Stage of Osteoblast Differentiation in Silicon and Zinc Doped Porous TCP
Fielding G.A., Sarkar N., Vahabzadeh S., Bose S.
Journal of Functional Biomaterials, 2019
.
Resorbable Mg2+-Containing Phosphates for Bone Tissue Repair
Kazakova G., Safronova T., Golubchikov D., Shevtsova O., Rau J.V.
Materials, 2021
.
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration
Pupilli F., Ruffini A., Dapporto M., Tavoni M., Tampieri A., Sprio S.
Biomimetics, 2022
.
Synthesis of Amorphous Calcium Phosphate Powders for Production of Bioceramics and Composites by 3D Printing
Zuev D.M., Golubchikov D.O., Evdokimov P.V., Putlyaev V.I.
Russian Journal of Inorganic Chemistry, 2022
.
Synthesis of Calcium Phosphate and Calcium Silicate Composites
Solonenko A.P., Blesman A.I., Polonyankin D.A., Gorbunov V.A.
Russian Journal of Inorganic Chemistry, 2018
.
Silicon-substituted hydroxyapatite ceramics (Si-HAp): densification and grain growth through the prism of sintering theories
Putlayev V., Veresov A., Pulkin M., Soin A., Kuznetsov V.
Materialwissenschaft und Werkstofftechnik, 2006
.
Revisiting silicate substituted hydroxyapatite by solid-state NMR
Gasquères G., Bonhomme C., Maquet J., Babonneau F., Hayakawa S., Kanaya T., Osaka A.
Magnetic Resonance in Chemistry, 2008
.
Ultrastructural comparison of dissolution and apatite precipitation on hydroxyapatite and silicon-substituted hydroxyapatitein vitro andin vivo
Porter A.E., Botelho C.M., Lopes M.A., Santos J.D., Best S.M., Bonfield W.
Journal of Biomedical Materials Research, 2004
.
Direct chemical bond of bioactive glass-ceramic materials to bone and muscle
Hench L.L., Paschall H.A.
Journal of Biomedical Materials Research, 1973
.
Low-Temperature Magnesium Calcium Phosphate Ceramics with Adjustable Resorption Rate
Lukina Y., Kotov S., Bionyshev-Abramov L., Serejnikova N., Chelmodeev R., Fadeev R., Toshev O., Tavtorkin A., Ryndyk M., Smolentsev D., Gavryushenko N., Sivkov S.
Ceramics, 2023
.
Powder Synthesized from Aqueous Solution of Calcium Nitrate and Mixed-Anionic Solution of Orthophosphate and Silicate Anions for Bioceramics Production
Golubchikov D., Safronova T.V., Nemygina E., Shatalova T.B., Tikhomirova I.N., Roslyakov I.V., Khayrutdinova D., Platonov V., Boytsova O., Kaimonov M., Firsov D.A., Lyssenko K.A.
Coatings, 2023
.
CaO–P2O5–Na2O-based sintering additives for hydroxyapatite (HAp) ceramics
Kalita S.J., Bose S., Hosick H.L., Bandyopadhyay A.
Biomaterials, 2004
.
The Impact of Hydroxyapatite Sintering Temperature on Its Microstructural, Mechanical, and Biological Properties
Trzaskowska M., Vivcharenko V., Przekora A.
International Journal of Molecular Sciences, 2023
.
Effect of Na2O on the sintering and melting behavior of CaO-SiO2-CaF2 slag
Han F., Yu L., Wen G., Guo J., Ran C., Gu S.
Journal of Materials Research and Technology, 2022
.
Preobrazhenskiy I.I., Putlyaev V.I.
Mendeleev Communications, 2023
.
Primary human osteoblast and mesenchymal stem cell responses to apatite/tricalcium phosphate bone cement modified with polyacrylic acid and bioactive glass
Thaitalay P., Thongsri O., Dangviriyakul R., Srisuwan S., Carney L., Gough J.E., Rattanachan S.T.
Journal of Biomedical Materials Research - Part A, 2023
.
Formation of Composites with a Hydrogel Matrix Filled with Cobalt Ferrite/Piezoelectric Magnetoelectric Elements by Stereolithographic 3D Printing
Tikhonova S.A., Evdokimov P.V., Putlyaev V.I., Golubchikov D.O., Murashko A.M., Leontiev N.V., Filippov Y.Y., Shcherbakov I.M.
Inorganic Materials: Applied Research, 2023