Home / Publications / Towards accurate machine learning predictions of properties of the P-O bond cleaving in ATP upon enzymatic hydrolysis

Towards accurate machine learning predictions of properties of the P-O bond cleaving in ATP upon enzymatic hydrolysis

Igor Viktorovich Polyakov 1
Igor Viktorovich Polyakov
Kirill Dmitrievich Miroshnichenko 1
Kirill Dmitrievich Miroshnichenko
Alexander Aleksandrovich Moskovsky 1
Alexander Aleksandrovich Moskovsky
Ekaterina Igorevna Marchenko 2
Ekaterina Igorevna Marchenko
Mariya Grigor'evna Khrenova
1 Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
2 Department of Materials Science, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
3 A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russian Federation
Published 2024-10-22
CommunicationVolume 34, Issue 6, 776-779
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Polyakov I. V. et al. Towards accurate machine learning predictions of properties of the P-O bond cleaving in ATP upon enzymatic hydrolysis // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 776-779.
GOST all authors (up to 50) Copy
Polyakov I. V., Miroshnichenko K. D., Mulashkina T. I., Moskovsky A. A., Marchenko E. I., Khrenova M. G. Towards accurate machine learning predictions of properties of the P-O bond cleaving in ATP upon enzymatic hydrolysis // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 776-779.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.10.003
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.003
TI - Towards accurate machine learning predictions of properties of the P-O bond cleaving in ATP upon enzymatic hydrolysis
T2 - Mendeleev Communications
AU - Polyakov, Igor Viktorovich
AU - Miroshnichenko, Kirill Dmitrievich
AU - Mulashkina, Tatiana Igorevna
AU - Moskovsky, Alexander Aleksandrovich
AU - Marchenko, Ekaterina Igorevna
AU - Khrenova, Mariya Grigor'evna
PY - 2024
DA - 2024/10/22
PB - Mendeleev Communications
SP - 776-779
IS - 6
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Polyakov,
author = {Igor Viktorovich Polyakov and Kirill Dmitrievich Miroshnichenko and Tatiana Igorevna Mulashkina and Alexander Aleksandrovich Moskovsky and Ekaterina Igorevna Marchenko and Mariya Grigor'evna Khrenova},
title = {Towards accurate machine learning predictions of properties of the P-O bond cleaving in ATP upon enzymatic hydrolysis},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Oct},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.003},
number = {6},
pages = {776--779},
doi = {10.1016/j.mencom.2024.10.003}
}
MLA
Cite this
MLA Copy
Polyakov, Igor Viktorovich, et al. “Towards accurate machine learning predictions of properties of the P-O bond cleaving in ATP upon enzymatic hydrolysis.” Mendeleev Communications, vol. 34, no. 6, Oct. 2024, pp. 776-779. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.003.

Keywords

ATP hydrolysis
Laplacian of electron density.
machine learning
myosin
QM/MM molecular dynamics

Abstract

Molecular dynamic simulations using QM/MM potentials are performed for the enzyme-substrate complex of adenosine triphosphate (ATP) with the motor protein myosin. Machine learning methods are applied to a dataset consisting of the geometry parameters of the active site in the enzyme-substrate complex to predict the Laplacian of electron density at the bond critical point of the PG-O3B bond being broken in ATP. Using a gradient boosting machine learning model, a mean absolute error of 0.01 a.u. and an R2 score of 0.99 are achieved, and it is found that the PG-O3B bond length is the most important feature, contributing 2/3, while other geometry features contribute 1/3.

References

.
VMD: Visual molecular dynamics
Humphrey W., Dalke A., Schulten K.
Journal of Molecular Graphics, 1996
.
Multiwfn: A multifunctional wavefunction analyzer
Lu T., Chen F.
Journal of Computational Chemistry, 2011
.
Gribanova T.N., Minyaev R.M., Minkin V.I.
Mendeleev Communications, 2023
.
Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral Angles
Best R.B., Zhu X., Shim J., Lopes P.E., Mittal J., Feig M., MacKerell A.D.
Journal of Chemical Theory and Computation, 2012
.
Comparison of simple potential functions for simulating liquid water
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L.
Journal of Chemical Physics, 1983
.
Nosé–Hoover chains: The canonical ensemble via continuous dynamics
Martyna G.J., Klein M.L., Tuckerman M.
Journal of Chemical Physics, 1992
.
NAMD goes quantum: an integrative suite for hybrid simulations
Melo M.C., Bernardi R.C., Rudack T., Scheurer M., Riplinger C., Phillips J.C., Maia J.D., Rocha G.B., Ribeiro J.V., Stone J.E., Neese F., Schulten K., Luthey-Schulten Z.
Nature Methods, 2018
.
Scalable molecular dynamics on CPU and GPU architectures with NAMD
Phillips J.C., Hardy D.J., Maia J.D., Stone J.E., Ribeiro J.V., Bernardi R.C., Buch R., Fiorin G., Hénin J., Jiang W., McGreevy R., Melo M.C., Radak B.K., Skeel R.D., Singharoy A., et. al.
Journal of Chemical Physics, 2020
.
From local explanations to global understanding with explainable AI for trees
Lundberg S.M., Erion G., Chen H., DeGrave A., Prutkin J.M., Nair B., Katz R., Himmelfarb J., Bansal N., Lee S.
Nature Machine Intelligence, 2020
.
The myosin superfamily at a glance
Hartman M.A., Spudich J.A.
Journal of Cell Science, 2012
.
Rumyantcev R.V., Yu. Zhigulin G., Zabrodina G.S., Katkova M.A., Yu. Ketkov S., Fukin G.K.
Mendeleev Communications, 2023
.
Khrenova M.G., Mulashkina T.I., Stepanyuk R.A., Nemukhin A.V.
Mendeleev Communications, 2024
.
Khrenova M.G., Mulashkina T.I., Kulakova A.M., Polyakov I.V., Nemukhin A.V.
Moscow University Chemistry Bulletin, 2024