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Towards accurate machine learning predictions of properties
of the P-O bond cleaving in ATP upon enzymatic hydrolysis
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Molecular dynamic simulations using QM/MM potentials are
performed for the enzyme—substrate complex of adenosine
triphosphate (ATP) with the motor protein myosin. Machine
learning methods are applied to a dataset consisting of the
geometry parameters of the active site in the enzyme—substrate
complex to predict the Laplacian of electron density at the
bond critical point of the P;—O35 bond being broken in ATP.
Using a gradient boosting machine learning model, a mean
absolute error of 0.01 a.u. and an R? score of 0.99 are achieved,
and it is found that the Pg—Oz bond length is the most
important feature, contributing 2/3, while other geometry
features contribute 1/3.
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Myosin is an ATPase that acts as a motor in a variety of activities,
including muscle contraction.’- It hydrolyzes adenosine triphosphate
(ATP) to adenosine diphosphate (ADP) and inorganic phosphate.
This enzyme has been extensively studied by both experimental and
theoretical methods, including the effects of disease-associated
amino acid substitutions.*> The chemical reaction most likely
occurs via a dissociative mechanism, i.e., the Pg—O5g bond is
broken before the covalent bond is formed between the P atom
and the oxygen of the catalytic water molecule (Figure 1). This
reaction proceeds via a two-water mechanism.* Nucleophilic
attack of P by a water molecule initiates the reaction that involves
cleavage of the P5—O3g bond (Figure 1, green arrows) and proton
transfer from the catalytic water Wat1 to Glu459 along a hydrogen
bond network comprising the auxiliary water molecule Wat2
(Figure 1, yellow arrows). ATP forms coordination bonds with
the Mg?* cation of the active site and hydrogen bonds with neighboring
amino acid residues. These interactions promote proper binding
of ATP to the active site and likely activate the ATP molecule for
the chemical reaction.

GTPases share the same dissociative mechanism, and it has
been shown that upon binding the enzyme active site activates a
substrate, namely weakening the Ps—O3g bond strength during
the formation of the enzyme-substrate (ES) complex.® This can
be easily visualized by plotting the calculated Laplacian of
electron density (V2p) in the plane formed by the Pg—O45 bond
and the nucleophilic oxygen atom of the catalytic water molecule
(Figure 2).5 The Laplacian of electron density discriminates spatial
regions of local electron density concentration with V2p(r) <0
and electron density depletion with V2o (r) > 0. In the non-
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molecular dynamics, Laplacian of electron density.

activated states, electron density concentration is observed in the
Ps—0sg bond region. After activation, this bond is characterized by
electron density depletion that means its weakening. This observation
seems reasonable since the P;—O5g bond should be broken in the
very beginning of a chemical reaction and should therefore be
prepared for this. Information about the electron structure of a
molecule can be obtained not only from the spatial distribution
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Figure 1 The active site of myosin in complex with ATP included in the QM
part of the QM/MM simulations. Yellow arrows show the proton transfer
pathway during the reaction. Green arrows correspond to the nucleophilic attack
and cleavage of the Ps—O3g bond. The asterisk indicates a fictitious disconnection
of the Ser236-Ser237 peptide bond, introduced for clarity of the figure.
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Figure 2 (a) 2D map of the Laplacian of electron density in the plane of
the Pg—O3g bond being broken in ATP and the nucleophilic oxygen atom
O, Of the water molecule, calculated on the QM/MM MD frame of the
myosin—ATP ES complex. Positive and negative isovalues are shown in blue
dashed and red solid lines, respectively. The arrow shows the direction of
nucleophilic attack. (b) Laplacian of electron density along the Pg—Osg bond.
The green dot is BCP of the Pg—O3g bond. Contour lines correspond to +(2 or
4 0r8) x 10" a.u., -2 < n < 1, blue dashed contour lines indicate regions of
electron density depletion [V (r) > 0], red solid lines show electron density
concentration [V2o(r) < 0], and black solid lines correspond to V2o (r) = 0.
The area with V2o (r) < 0 is colored light green.

of the corresponding descriptors but also from their values at the
critical points of the electron density. These ideas are developed
within the quantum theory of atoms in molecules (QTAIM).
Of particular interest are the bond critical points (BCPs), which
are the minima of the electron density in one spatial direction
and the maxima in the other two. The BCP is located on the bond
path that connects the two interacting atoms, and the electron
density descriptors characterize and classify this interaction. The
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Figure 3 Distribution of the Laplacian of electron density at the BCP of
the Pg—O3g bond being broken, calculated on 10000 QM/MM MD frames
of the myosin-ATP ES complex trajectory.

Laplacian of electron density is also an informative descriptor
when calculated at the BCP (Figure 2).8°

The aim of this work is to use machine learning (ML) methods
to establish a relationship between the features of the geometry
of the myosin active site in the ES complex and the Laplacian of
electron density calculated at the BCP of the Pg—O35 bond being
broken.

The data set was obtained from the molecular dynamics (MD)
trajectory of the ES complex calculated using combined quantum
mechanics/molecular mechanics (QM/MM) potentials.” The
hydrolysis reaction mechanism and the role of amino acid residues
in the active site were considered to select a set of features for
ML (Table S1, see Online Supplementary Materials). These are
the nucleophilic attack and breaking bond distances, proton transfer
path distances, lengths of other covalent bonds with the phosphorus
atom and interatomic distances between ATP and neighboring
groups, a total of 18 features [Figure S1(a), see Online Supple-
mentary Materials]. In addition, 15 angles in the active site were
selected [Figure S1(b)]. This set of 33 features was extracted from
each QM/MM MD frame.

The target values are described by a single normal distribution
(Figure 3). The geometry features are distributed differently
(Figures S2 and S3). Some of these plots represent a single normal
distribution, such as Dist6 (Pg—Osg bond), while many others are
composite and mixed distributions, indicating the presence of
populations with different states.

The feature covariance matrix was calculated to depict the feature
dependencies (Figure S4). Strong correlations were observed for

T Computational protocol. A full-atom model of the ES complex of
myosin and ATP was constructed based on the crystal structure of the
myosin complex with ADP and vanadate anion (PDB ID: 1VOM).0
Hydrogen atoms were added using the Reduce program!! to reproduce
neutral pH. The ES complex was solvated in a rectangular water box and
neutralized. Classical MD simulation for 2 ns was performed with fixed
coordinates of the protein and ATP to relax the solvation shell. MD
simulations were performed using the NAMD software package.'? Then,
a5 ns MD trajectory was calculated without additional restraints to relax
the protein. The CHARMM?2 force field was used to describe the enzyme
and ATP molecule, and TIP3P'* was used for water molecules. The
preparation of the full-atom model as well as visualization and analysis
of the structures were carried out using the VMD program.®

The system preparation was followed by a 10 ps production QM/MM
MD run. The QM subsystem (see Figure 1) included the side chains of
Serl81, Gly182, Lys185, Thrl86, Ser236, Ser237, Arg238, Ser456,
Gly457 and Glu459, the phosphate groups of ATP, the Mg?* cation and
four water molecules, for a total of 140 atoms with a net charge of —1.
The QM part was solved using the Kohn—Sham DFT approach with the
PBEQ hybrid functional®® empirically corrected for D3 dispersion
interactions!” and the 6-31G** basis set. The energies and forces in the
QM subsystem were calculated in the TeraChem program;!8 the MM part

and the MD step were calculated in the NAMD program using a custom
interface.® The QM method was chosen in accordance with the reference
QM/MM studies of enzymatic reaction mechanisms, which were
summarized in a recent review.?® All MD calculations with classical and
combined potentials were performed in the NPT ensemble at p = 1 atm
and T =300 K with an integration step of 1fs using a Nosé—Hoover
barostat?! and a Langevin thermostat.2

QTAIM theory” was utilized to determine the BCPs using the Multiwfn
program.? BCPs are saddle points of the electron density and characterize
the interacting atoms. The Laplacian of electron density V?p was
calculated on different MD frames for the BCP of the Pg—O,g bond being
broken. The dataset included 10* samples, each consisting of V2p and 33
features. These data were combined into the Pandas DataFrame.

The scikit-learn library,®* LightGBM library? and TabNetRegressor
from pytorch-tabnet?® were used to train the ML models and make
predictions. The full dataset was split into training—validation and test
subsets ina4:1 ratio. Four-fold cross-validation and GridSearchCV were
utilized for hyperparameter optimization. Linear models were employed
using a pipeline with StandardScaler to standardize features before
implementing regression. Mean absolute error (MAE) was used as the
loss metric for validation.

The ML protocol code and dataset are deposited on Zenodo.?”

- 777 -



Mendeleev Commun., 2024, 34, 776-779

0.8
0.7
0.6
0.5
0.4

Vip (au)

0.3
0.2

0.1

N

s e
1

00 1.7 1.8 1.9

Dist6/A

Figure 4 Laplacian of electron density at the BCP of the Pg—O3g bond
being broken as a function of its length, calculated on 10000 QM/MM MD
frames of the ES complex trajectory.

Angl with Dist2/11/12 and Ang9/10, Dist12 with Dist2 and
Ang1/9/10, Ang8 with Dist11 and Angl1 with Ang13. Features
Angl and Dist12 were excluded from the dataset to avoid multi-
collinearity for proper construction of linear models (Figure S5).

Figure 4 demonstrates the dependence of the Laplacian of
electron density at the BCP on Dist6 in the form of a banana-
shaped plot, which in principle can be approximated by a linear
function. Other features or their linear combination cannot be
easily interpreted, since the plot is a scattered blob. This means
that there is a multidimensional banana-shaped plot (Figure S6)
of the target value depending on the selected features.

Simple linear regression yielded MAE = 0.0256 a.u. and R? = 0.939,
which is already an almost perfect prediction. The regression
coefficients are presented in Table S2. The major contribution
(~68%) comes from the breakable Pc—O5g bond (Dist6). Other
important contributions are made by Angl3 (~4%), Angl2
(~4%), Dist3 (~3%), Ang4 (~2%), Dist9 (~2%), Dist13 (~2%),
Dist15 (~2%), Angll (~2%) and Angl5 (~2%). All other 19
features together contribute about 9%. Both linear regression
models with regularization, Lasso (L1) and Ridge (L2), did not
reduce the MAE loss metric. It is expected that the Laplacian
value at BCP is mainly affected by the Pc—O35 bond length
(Dist6) in the linear model, but the contributions of other features
still seem to be significant. We could point out that the position
of the magnesium cation relative to the phosphate groups of ATP
(Ang13, Ang12, Dist9, Dist15 and Ang11) and the direction of water
attack (Dist3 and Ang15) contribute ~14% and ~5%, respectively.
However, if we drop all features except Dist6, the MAE of the
resulting linear regression is 0.0263 a.u. (R? = 0.934). Basically,
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Figure 5 Shapley values calculated for the LGBM model. Dist6 corresponds
to the Pg—Osg bond being broken.

Dist6 is the only meaningful feature for the linear models to
extract the underlying relationship, while the others can be
attributed to predicting noise.

To further improve the prediction quality and determine the
importance of different features, another class of models, gradient
boosted decision trees, was considered. The best MAE of 0.01 a.u.
in four-fold cross-validation was obtained using LightGBM with
a depth of six and a learning rate of 0.34. To test whether there is
a significant difference in feature importance between the linear
regression and LGBM models, Shapley values were calculated
using the SHAP (SHapley Additive exPlanations) library.? The mean
SHAP values imply that the contribution of Dist6 is dominant, as
in the case of the linear regression model, while the individual
contributions of all other features are miniscule, but their combined
importance accounts for approximately a third of the model
prediction (Figure 5). The SHAP beeswarm plot hints that lower
Dist6 values correspond to higher SHAP values and are thus
more important in the model predictions (Figure S7).

The LGBM model trained with only the Dist6 feature yields
MAE = 0.022, which is much worse than MAE = 0.01 for the
full set of features. Unlike linear models, gradient boosting is able
to extract valuable information from additional features.

Next, the TabNet artificial neural network model?® was tested.
The computed mean cross-validation MAE loss for the TabNet
regression model was ~0.02 a.u., which is better than that for the
linear regression but worse than that for the tuned LGBM model,
so the LGBM model was chosen for testing.

The LGBM regressor MAE loss on the test dataset is 0.009 a.u.
(R=0.992), which is even lower than the validation result.
In comparison, the dummy mean prediction yielded a test MAE
loss of 0.106 a.u. and R? = 0.

In conclusion, it was demonstrated that the electron density
property of the cleaving P;—O5z bond, determined by the
Laplacian of electron density at the corresponding BCP, depends
on a set of geometry parameters. Different ML models were
applied to determine the contributions of individual geometry
features to V2p. The lengths of the P—O35 bond being broken
contribute about 2/3, and other features are important in combination.
Notable features are the nucleophilic attack distance and features
determining the exact position of the Mg?* cation coordinating
the ATP phosphates.

This work was supported by the Interdisciplinary Scientific and
Educational School of Moscow State University ‘Brain, cognitive
systems, artificial intelligence” (project no. 23-Sh03-04). The research
was carried out using equipment of the shared research facilities of
the HPC computing resources at Lomonosov Moscow State University.

Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2024.10.003.
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