
Mendeleev Commun., 2024, 34, 776–779

–  776  –

Mendeleev
Communications

© 2024 Mendeleev Communications. Published by ELSEVIER B.V.  
on behalf of the N. D. Zelinsky Institute of Organic Chemistry of the  
Russian Academy of Sciences.

Myosin is an ATPase that acts as a motor in a variety of activities, 
including muscle contraction.1–3 It hydrolyzes adenosine triphosphate 
(ATP) to adenosine diphosphate (ADP) and inorganic phosphate. 
This enzyme has been extensively studied by both experimental and 
theoretical methods, including the effects of disease-associated 
amino acid substitutions.4,5 The chemical reaction most likely 
occurs via a dissociative mechanism, i.e., the PG–O3B bond is 
broken before the covalent bond is formed between the PG atom 
and the oxygen of the catalytic water molecule (Figure 1). This 
reaction proceeds via a two-water mechanism.4 Nucleophilic 
attack of PG by a water molecule initiates the reaction that involves 
cleavage of the PG–O3B bond (Figure 1, green arrows) and proton 
transfer from the catalytic water Wat1 to Glu459 along a hydrogen 
bond network comprising the auxiliary water molecule Wat2 
(Figure 1, yellow arrows). ATP forms coordination bonds with 
the Mg2+ cation of the active site and hydrogen bonds with neighboring 
amino acid residues. These interactions promote proper binding 
of ATP to the active site and likely activate the ATP molecule for 
the chemical reaction.

GTPases share the same dissociative mechanism, and it has 
been shown that upon binding the enzyme active site activates a 
substrate, namely weakening the PG–O3B bond strength during 
the formation of the enzyme–substrate (ES) complex.6 This can 
be easily visualized by plotting the calculated Laplacian of 
electron density (∇ 2r) in the plane formed by the PG–O3B bond 
and the nucleophilic oxygen atom of the catalytic water molecule 
(Figure 2).6 The Laplacian of electron density discriminates spatial 
regions of local electron density concentration with ∇ 2r(r) < 0 
and electron density depletion with ∇ 2r(r) > 0. In the non-

activated states, electron density concentration is observed in the 
PG–O3B bond region. After activation, this bond is characterized by 
electron density depletion that means its weakening. This observation 
seems reasonable since the PG–O3B bond should be broken in the 
very beginning of a chemical reaction and should therefore be 
prepared for this. Information about the electron structure of a 
molecule can be obtained not only from the spatial distribution 
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Molecular dynamic simulations using QM/MM potentials are 
performed for the enzyme–substrate complex of adenosine 
triphosphate (ATP) with the motor protein myosin. Machine 
learning methods are applied to a dataset consisting of the 
geometry parameters of the active site in the enzyme–substrate 
complex to predict the Laplacian of electron density at the 
bond critical point of the PG–O3B bond being broken in ATP. 
Using a gradient boosting machine learning model, a mean 
absolute error of 0.01 a.u. and an R2 score of 0.99 are achieved, 
and it is found that the PG–O3B bond length is the most 
important feature, contributing 2/3, while other geometry 
features contribute 1/3.
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Figure  1  The active site of myosin in complex with ATP included in the QM 
part of the QM/MM simulations. Yellow arrows show the proton transfer 
pathway during the reaction. Green arrows correspond to the nucleophilic attack 
and cleavage of the PG–O3B bond. The asterisk indicates a fictitious disconnection 
of the Ser236–Ser237 peptide bond, introduced for clarity of the figure.



Mendeleev Commun., 2024, 34, 776–779

–  777  –

of the corresponding descriptors but also from their values at the 
critical points of the electron density. These ideas are developed 
within the quantum theory of atoms in molecules (QTAIM).7 
Of particular interest are the bond critical points (BCPs), which 
are the minima of the electron density in one spatial direction 
and the maxima in the other two. The BCP is located on the bond 
path that connects the two interacting atoms, and the electron 
density descriptors characterize and classify this interaction. The 

Laplacian of electron density is also an informative descriptor 
when calculated at the BCP (Figure 2).8,9

The aim of this work is to use machine learning (ML) methods 
to establish a relationship between the features of the geometry 
of the myosin active site in the ES complex and the Laplacian of 
electron density calculated at the BCP of the PG–O3B bond being 
broken.

The data set was obtained from the molecular dynamics (MD) 
trajectory of the ES complex calculated using combined quantum 
mechanics/molecular mechanics (QM/MM) potentials.† The 
hydrolysis reaction mechanism and the role of amino acid residues 
in the active site were considered to select a set of features for 
ML (Table S1, see Online Supplementary Materials). These are 
the nucleophilic attack and breaking bond distances, proton transfer 
path distances, lengths of other covalent bonds with the phosphorus 
atom and interatomic distances between ATP and neighboring 
groups, a total of 18 features [Figure S1(a), see Online Supple
mentary Materials]. In addition, 15 angles in the active site were 
selected [Figure S1(b)]. This set of 33 features was extracted from 
each QM/MM MD frame.

The target values are described by a single normal distribution 
(Figure  3). The geometry features are distributed differently 
(Figures S2 and S3). Some of these plots represent a single normal 
distribution, such as Dist6 (PG–O3B bond), while many others are 
composite and mixed distributions, indicating the presence of 
populations with different states.

The feature covariance matrix was calculated to depict the feature 
dependencies (Figure S4). Strong correlations were observed for 
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Figure  2  (a) 2D map of the Laplacian of electron density in the plane of 
the PG–O3B bond being broken in ATP and the nucleophilic oxygen atom 
Owat of the water molecule, calculated on the QM/MM MD frame of the 
myosin–ATP ES complex. Positive and negative isovalues are shown in blue 
dashed and red solid lines, respectively. The arrow shows the direction of 
nucleophilic attack. (b) Laplacian of electron density along the PG–O3B bond. 
The green dot is BCP of the PG–O3B bond. Contour lines correspond to ±(2 or 
4 or 8) × 10n a.u., −2 £ n £ 1, blue dashed contour lines indicate regions of 
electron density depletion [∇ 2r(r) > 0], red solid lines show electron density 
concentration [∇ 2r(r) < 0], and black solid lines correspond to ∇ 2r(r) = 0. 
The area with ∇ 2r(r) < 0 is colored light green.
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Figure  3  Distribution of the Laplacian of electron density at the BCP of 
the PG–O3B bond being broken, calculated on 10 000 QM/MM MD frames 
of the myosin–ATP ES complex trajectory.

†	 Computational protocol. A full-atom model of the ES complex of 
myosin and ATP was constructed based on the crystal structure of the 
myosin complex with ADP and vanadate anion (PDB ID: 1VOM).10 
Hydrogen atoms were added using the Reduce program11 to reproduce 
neutral pH. The ES complex was solvated in a rectangular water box and 
neutralized. Classical MD simulation for 2 ns was performed with fixed 
coordinates of the protein and ATP to relax the solvation shell. MD 
simulations were performed using the NAMD software package.12 Then, 
a 5 ns MD trajectory was calculated without additional restraints to relax 
the protein. The CHARMM13 force field was used to describe the enzyme 
and ATP molecule, and TIP3P14 was used for water molecules. The 
preparation of the full-atom model as well as visualization and analysis 
of the structures were carried out using the VMD program.15

	 The system preparation was followed by a 10 ps production QM/MM 
MD run. The QM subsystem (see Figure 1) included the side chains of 
Ser181, Gly182, Lys185, Thr186, Ser236, Ser237, Arg238, Ser456, 
Gly457 and Glu459, the phosphate groups of ATP, the Mg2+ cation and 
four water molecules, for a total of 140 atoms with a net charge of –1. 
The QM part was solved using the Kohn–Sham DFT approach with the 
PBE0 hybrid functional16 empirically corrected for D3 dispersion 
interactions17 and the 6-31G** basis set. The energies and forces in the 
QM subsystem were calculated in the TeraChem program;18 the MM part 

and the MD step were calculated in the NAMD program using a custom 
interface.19 The QM method was chosen in accordance with the reference 
QM/MM studies of enzymatic reaction mechanisms, which were 
summarized in a recent review.20 All MD calculations with classical and 
combined potentials were performed in the NPT ensemble at p = 1 atm 
and T = 300 K with an integration step of 1 fs using a Nosé–Hoover 
barostat21 and a Langevin thermostat.22

	 QTAIM theory7 was utilized to determine the BCPs using the Multiwfn 
program.23 BCPs are saddle points of the electron density and characterize 
the interacting atoms. The Laplacian of electron density ∇2r was 
calculated on different MD frames for the BCP of the PG–O3B bond being 
broken. The dataset included 104 samples, each consisting of ∇ 2r and 33 
features. These data were combined into the Pandas DataFrame.
	 The scikit-learn library,24 LightGBM library25 and TabNetRegressor 
from pytorch-tabnet26 were used to train the ML models and make 
predictions. The  full dataset was split into training–validation and test 
subsets in a 4 : 1 ratio. Four-fold cross-validation and GridSearchCV were 
utilized for hyperparameter optimization. Linear models were employed 
using a pipeline with StandardScaler to standardize features before 
implementing regression. Mean absolute error (MAE) was used as the 
loss metric for validation.
	 The ML protocol code and dataset are deposited on Zenodo.27
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Ang1 with Dist2/11/12 and Ang9/10, Dist12 with Dist2 and 
Ang1/9/10, Ang8 with Dist11 and Ang11 with Ang13. Features 
Ang1 and Dist12 were excluded from the dataset to avoid multi
collinearity for proper construction of linear models (Figure S5).

Figure  4 demonstrates the dependence of the Laplacian of 
electron density at the BCP on Dist6 in the form of a banana-
shaped plot, which in principle can be approximated by a linear 
function. Other features or their linear combination cannot be 
easily interpreted, since the plot is a scattered blob. This means 
that there is a multidimensional banana-shaped plot (Figure S6) 
of the target value depending on the selected features.

Simple linear regression yielded MAE = 0.0256 a.u. and R2 = 0.939, 
which is already an almost perfect prediction. The  regression 
coefficients are presented in Table S2. The major contribution 
(~68%) comes from the breakable PG–O3B bond (Dist6). Other 
important contributions are made by Ang13 (~4%), Ang12 
(~4%), Dist3 (~3%), Ang4 (~2%), Dist9 (~2%), Dist13 (~2%), 
Dist15 (~2%), Ang11 (~2%) and Ang15 (~2%). All other 19 
features together contribute about 9%. Both linear regression 
models with regularization, Lasso (L1) and Ridge (L2), did not 
reduce the MAE loss metric. It is expected that the Laplacian 
value at BCP is mainly affected by the PG–O3B bond length 
(Dist6) in the linear model, but the contributions of other features 
still seem to be significant. We could point out that the position 
of the magnesium cation relative to the phosphate groups of ATP 
(Ang13, Ang12, Dist9, Dist15 and Ang11) and the direction of water 
attack (Dist3 and Ang15) contribute ~14% and ~5%, respectively. 
However, if we drop all features except Dist6, the MAE of the 
resulting linear regression is 0.0263 a.u. (R2 = 0.934). Basically, 

Dist6 is the only meaningful feature for the linear models to 
extract the underlying relationship, while the others can be 
attributed to predicting noise.

To further improve the prediction quality and determine the 
importance of different features, another class of models, gradient 
boosted decision trees, was considered. The best MAE of 0.01 a.u. 
in four-fold cross-validation was obtained using LightGBM with 
a depth of six and a learning rate of 0.34. To test whether there is 
a significant difference in feature importance between the linear 
regression and LGBM models, Shapley values were calculated 
using the SHAP (SHapley Additive exPlanations) library.28 The mean 
SHAP values imply that the contribution of Dist6 is dominant, as 
in the case of the linear regression model, while the individual 
contributions of all other features are miniscule, but their combined 
importance accounts for approximately a third of the model 
prediction (Figure 5). The SHAP beeswarm plot hints that lower 
Dist6 values correspond to higher SHAP values and are thus 
more important in the model predictions (Figure S7).

The LGBM model trained with only the Dist6 feature yields 
MAE = 0.022, which is much worse than MAE = 0.01 for the 
full set of features. Unlike linear models, gradient boosting is able 
to extract valuable information from additional features.

Next, the TabNet artificial neural network model26 was tested. 
The computed mean cross-validation MAE loss for the TabNet 
regression model was ~0.02 a.u., which is better than that for the 
linear regression but worse than that for the tuned LGBM model, 
so the LGBM model was chosen for testing.

The LGBM regressor MAE loss on the test dataset is 0.009 a.u. 
(R2 = 0.992), which is even lower than the validation result. 
In comparison, the dummy mean prediction yielded a test MAE 
loss of 0.106 a.u. and R2 = 0.

In conclusion, it was demonstrated that the electron density 
property of the cleaving PG–O3B bond, determined by the 
Laplacian of electron density at the corresponding BCP, depends 
on a set of geometry parameters. Different ML models were 
applied to determine the contributions of individual geometry 
features to ∇ 2r. The lengths of the PG–O3B bond being broken 
contribute about 2/3, and other features are important in combination. 
Notable features are the nucleophilic attack distance and features 
determining the exact position of the Mg2+ cation coordinating 
the ATP phosphates.

This work was supported by the Interdisciplinary Scientific and 
Educational School of Moscow State University ‘Brain, cognitive 
systems, artificial intelligence” (project no. 23-Sh03-04). The research 
was carried out using equipment of the shared research facilities of 
the HPC computing resources at Lomonosov Moscow State University.
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