Home / Publications / Deep machine learning for STEM image analysis

Deep machine learning for STEM image analysis

Anna Vladimirovna Nartova 1, 2
Anna Vladimirovna Nartova
Andrey Victorovich Matveev 1
Andrey Victorovich Matveev
Larisa Mikhailovna Kovtunova 1, 2
Larisa Mikhailovna Kovtunova
1 Department of Chemistry, Novosibirsk State University, Novosibirsk, Russian Federation
2 G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
Published 2024-10-22
CommunicationVolume 34, Issue 6, 774-775
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Nartova A. V. et al. Deep machine learning for STEM image analysis // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 774-775.
GOST all authors (up to 50) Copy
Nartova A. V., Matveev A. V., Kovtunova L. M., Okunev A. G. Deep machine learning for STEM image analysis // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 774-775.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.10.002
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.002
TI - Deep machine learning for STEM image analysis
T2 - Mendeleev Communications
AU - Nartova, Anna Vladimirovna
AU - Matveev, Andrey Victorovich
AU - Kovtunova, Larisa Mikhailovna
AU - Okunev, Aleksey Grigoryevich
PY - 2024
DA - 2024/10/22
PB - Mendeleev Communications
SP - 774-775
IS - 6
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Nartova,
author = {Anna Vladimirovna Nartova and Andrey Victorovich Matveev and Larisa Mikhailovna Kovtunova and Aleksey Grigoryevich Okunev},
title = {Deep machine learning for STEM image analysis},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Oct},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.002},
number = {6},
pages = {774--775},
doi = {10.1016/j.mencom.2024.10.002}
}
MLA
Cite this
MLA Copy
Nartova, Anna Vladimirovna, et al. “Deep machine learning for STEM image analysis.” Mendeleev Communications, vol. 34, no. 6, Oct. 2024, pp. 774-775. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.002.

Keywords

automatic recognition of objects
deep machine learning
image analysis.
microscopy
neural network
STEM
supported catalysts

Abstract

The universal, user-friendly online iOk Platform for automatic recognition of any type of objects in images based on deep machine learning is presented. Services aggregated in the iOk Platform significantly reduce the time spent on quantitative image analysis, decrease the influence of the subjective factor and increase the accuracy of the analysis by expanding the set of data that can be analyzed automatically. It is shown how the services can be used to analyze scanning transmission electron microscopy images obtained in heterogeneous catalysis studies, allowing for measurements of thousands of objects in an image, as well as simultaneous analysis of objects of different types, namely: nanoparticles and single sites.

References

.
Toward Totally Defined Nanocatalysis: Deep Learning Reveals the Extraordinary Activity of Single Pd/C Particles.
Eremin D.B., Galushko A.S., Boiko D.A., Pentsak E.O., Chistyakov I.V., Ananikov V.P.
Journal of the American Chemical Society, 2022
.
Particle Recognition on Transmission Electron Microscopy Images Using Computer Vision and Deep Learning for Catalytic Applications
Nartova A.V., Mashukov M.Y., Astakhov R.R., Kudinov V.Y., Matveev A.V., Okunev A.G.
Catalysts, 2022
.
Time-Resolved Formation and Operation Maps of Pd Catalysts Suggest a Key Role of Single Atom Centers in Cross-Coupling
Galushko A.S., Boiko D.A., Pentsak E.O., Eremin D.B., Ananikov V.P.
Journal of the American Chemical Society, 2023
.
ilastik: interactive machine learning for (bio)image analysis
Berg S., Kutra D., Kroeger T., Straehle C.N., Kausler B.X., Haubold C., Schiegg M., Ales J., Beier T., Rudy M., Eren K., Cervantes J.I., Xu B., Beuttenmueller F., Wolny A., et. al.
Nature Methods, 2019
.
Microsoft COCO: Common Objects in Context
Lin T., Maire M., Belongie S., Hays J., Perona P., Ramanan D., Dollár P., Zitnick C.L.
Lecture Notes in Computer Science, 2014
.
Nanoparticle Recognition on Scanning Probe Microscopy Images Using Computer Vision and Deep Learning
.
Deep Learning-Based Classification of Weld Surface Defects
Zhu, Ge, Liu
Applied Sciences (Switzerland), 2019
.
Deep Learning Based Instance Segmentation of Titanium Dioxide Particles in the Form of Agglomerates in Scanning Electron Microscopy
Monchot P., Coquelin L., Guerroudj K., Feltin N., Delvallée A., Crouzier L., Fischer N.
Nanomaterials, 2021
.
Cellpose: a generalist algorithm for cellular segmentation
Stringer C., Wang T., Michaelos M., Pachitariu M.
Nature Methods, 2020
.
Deep learning for cellular image analysis
Moen E., Bannon D., Kudo T., Graf W., Covert M., Van Valen D.
Nature Methods, 2019
.
LabelMe: A Database and Web-Based Tool for Image Annotation
Russell B.C., Torralba A., Murphy K.P., Freeman W.T.
International Journal of Computer Vision, 2007
.
Nartova A.V., Kovtunova L.M., Larichev Y.V., Khudorozhkov A.K., Bobrovskaya A.N., Shterk G.V., Bukhtiyarov V.I.
Mendeleev Communications, 2017
.
iOk Platform for Automatic Search and Analysis of Objects in Images Using Artificial Intelligence in the Study of Supported Catalysts
Nartova A.V., Matveev A.V., Mashukov M.Y., Belotserkovskii V.A., Sankova N.N., Kudinov V.Y., Okunev A.G.
Kinetics and Catalysis, 2023
.
XPS and HR TEM Elucidation of the Diversity of Titania-Supported Single-Site Ir Catalyst Performance in Spin-Selective Propene Hydrogenation
Nartova A.V., Kvon R.I., Kovtunova L.M., Skovpin I.V., Koptyug I.V., Bukhtiyarov V.I.
International Journal of Molecular Sciences, 2023
.
DLgram cloud service for deep‐learning analysis of microscopy images
Matveev A.V., Nartova A.V., Sankova N.N., Okunev A.G.
Microscopy Research and Technique, 2024