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Deep machine learning for STEM image analysis
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The universal, user-friendly online iOk Platform for automatic
recognition of any type of objects in images based on deep
machine learning is presented. Services aggregated in the iOk
Platform significantly reduce the time spent on quantitative
image analysis, decrease the influence of the subjective factor
and increase the accuracy of the analysis by expanding the
set of data that can be analyzed automatically. It is shown how the
services can be used to analyze scanning transmission electron
microscopy images obtained in heterogeneous catalysis studies,
allowing for measurements of thousands of objects in an image,
as well as simultaneous analysis of objects of different types,
namely: nanoparticles and single sites.
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Deep machine learning for automatically finding, counting and
measuring objects in any type of image, including images obtained
using various types of microscopy, is already a powerful tool in
modern research work.1"10 Since the sizes of species responsible
for catalytic activity (active component particles, single sites, etc.)
are extremely important,1112 the application of this approach in
heterogeneous catalysis is very useful.11-14

This article introduces the iOk Platform,” which provides access
to the ParticlesNN website and the DLgram and No Code ML
cloud services. Detailed instructions for using the ParticlesNN®10
and DLgram?® services are available elsewhere. ParticlesNN and
DLgram use the Cascade Mask-RCNN family!6 of neural networks
pre-trained on the COCO dataset,!” while No Code ML uses the
ConvNeXt!8 neural network.*

The image recognition results are provided in a graphic file with
outlined contours and a JSON file in the LabelMe!®2° program
format. Outputting the result to a JSON file is an important feature
of the developed services, as it gives the expert the right of the final
decision when identifying objects: it is possible to correct the
found contours, delete falsely found contours or add a missing one.
The “Calculate Stat’ function of the modified LabelMe program®
generates a table of object parameters required for statistical
analysis. The user receives a list of object parameters (in pixels):
area (S), diameter of the projected area [D = 2V(S/x)] and position

T The iOk Platform is available at https://iok.nsu.ru/english/.

* All of these services provide access to neural networks running on an
HPE Apollo 6500 Gen10 server with eight NVIDIA Tesla V-100 graphics
accelerators at the Institute of Intellectual Robototechnics at Novosibirsk
State University.

§ The modified LabelMe program is available at https://t.me/nanoparticles_
nsk/10115.
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(coordinates of the center) of each found object. This allows
determining the mean size of an object and the distances between
objects, calculating the number of objects per unit area of the image
and building histograms of the size distribution. The development
of the methodology for using previously developed services, as well
as the experience of solving real practical cases, have shown that the
ability to train neural networks by users on their own images makes
the DLgram and No Code ML services universal and suitable for
images of any type. The fundamental issue is the labeling of images
for the training dataset. The advantages and disadvantages of the
proposed approach lie in the basic principles of deep machine
learning. In the extreme case of the most successful training, the
network should see exactly what the user’s eye sees, and should
not see what the user does not see. The main disadvantage is the
dependence of the recognition result on the quality of the training
dataset. If the recognition result does not satisfy the user, then it
is necessary to work with the correct labeling of images for
training the network, as shown below.

The development of scanning transmission electron microscopy
(STEM) poses new analysis challenges for researchers working in
all fields of knowledge, including the investigation of supported
catalysts. The huge number of visible particles in a single image
is a difficult task for manual analysis. The use of neural networks
has specifics regarding data labeling. Figure 1(a) shows the
labeling of a STEM image of the Pd/Sibunite catalyst for training
a neural network in DLgram. In a particular case, two crops were
marked in regions with different contrast for better recognition.
The training dataset consists of only 42 particles. Figure 1(b)
shows the recognition result. It is clearly seen that all particles
are well recognized: a total of 660 nanoparticles were found. The
network falsely “found’ objects on the reference mark, but this is
easily corrected in the LabelMe program. The analysis time is
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Figure 1 Object recognition using DLgram: (a) overview STEM image of
Pd/Sibunite catalyst labeled for neural network training with red rectangles
for crops and green contours for nanoparticles; (b) recognition result in the
form of blue contours for recognized nanoparticles (brown arrows indicate
incorrectly recognized objects).

reduced to minutes, and the model formed during the network
training can be used to recognize similar images.

Recently, special attention has been paid to the consideration of
single atoms and small clusters of the active component of catalysts
(the so-called ‘single sites’) in the study of the mechanisms of
catalytic reactions.'314 For this purpose, the problem of simultaneous
analysis of nanoparticles and single sites should be solved. This
can be done by labeling two types of objects for training the neural
network. In the case shown in Figure 2, three crops were marked.
The dataset consists of one nanoparticle and 31 single sites.
Seven particles and 283 single sites were recognized [Figure 2(b)].
One particle was classified as both a “particle’ and a ‘single site’,
which is easily corrected in the LabelMe program. Obviously,
not all small objects can be recognized by the neural network in
such images of real catalysts, since not all of them can be clearly
detected by the researcher’s eye. Since the sizes of such single
sites are close to the resolution limit of the microscope, this problem
can only be solved by further improving the setups and experimental
conditions.

In conclusion, it should be noted that the described approach
allows to significantly increase the volume of processed data in
a fully automatic mode, saving researchers’ time and significantly
expanding the list of tasks to be solved. Modern progress in
microscopic technology requires the use of deep neural networks
for data analysis. The iOk Platform is a free and user-friendly
image recognition tool that does not require coding skills and is
available to researchers around the world.

This work was supported by the Ministry of Science and Higher
Education of the Russian Federation within the governmental
order for Boreskov Institute of Catalysis (project FWUR-2024-
0032). The authors would like to thank E. Y. Gerasimov (for
STEM) and Sarah Lindemann-Komarova.

Labeled single-site

(9] Recognized particle

som _ Recognized single-site]

Figure 2 Object recognition using DLgram: (a) STEM image of Pd/Sibunite
catalyst labeled for neural network training with red rectangles for crops,
green contours for nanoparticles and yellow contours for single sites;
(b) recognition result in the form of light lilac contours for nanoparticles and
purple contours for single sites.
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