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Deep machine learning for automatically finding, counting and 
measuring objects in any type of image, including images obtained 
using various types of microscopy, is already a powerful tool in 
modern research work.1–10 Since the sizes of species responsible 
for catalytic activity (active component particles, single sites, etc.) 
are extremely important,11,12 the application of this approach in 
heterogeneous catalysis is very useful.11–14

This article introduces the iOk Platform,† which provides access 
to the ParticlesNN website and the DLgram and No Code ML 
cloud services. Detailed instructions for using the ParticlesNN9,10 
and DLgram15 services are available elsewhere. ParticlesNN and 
DLgram use the Cascade Mask-RCNN family16 of neural networks 
pre-trained on the COCO dataset,17 while No Code ML uses the 
ConvNeXt18 neural network.‡

The image recognition results are provided in a graphic file with 
outlined contours and a JSON file in the LabelMe19,20 program 
format. Outputting the result to a JSON file is an important feature 
of the developed services, as it gives the expert the right of the final 
decision when identifying objects: it is possible to correct the 
found contours, delete falsely found contours or add a missing one. 
The  ‘Calculate Stat’ function of the modified LabelMe program§ 
generates a table of object parameters required for statistical 
analysis. The user receives a list of object parameters (in pixels): 
area (S), diameter of the projected area [D = 2√(S/p)] and position 

(coordinates of the center) of each found object. This allows 
determining the mean size of an object and the distances between 
objects, calculating the number of objects per unit area of the image 
and building histograms of the size distribution. The development 
of the methodology for using previously developed services, as well 
as the experience of solving real practical cases, have shown that the 
ability to train neural networks by users on their own images makes 
the DLgram and No Code ML services universal and suitable for 
images of any type. The fundamental issue is the labeling of images 
for the training dataset. The advantages and disadvantages of the 
proposed approach lie in the basic principles of deep machine 
learning. In the extreme case of the most successful training, the 
network should see exactly what the user’s eye sees, and should 
not see what the user does not see. The main disadvantage is the 
dependence of the recognition result on the quality of the training 
dataset. If the recognition result does not satisfy the user, then it 
is necessary to work with the correct labeling of images for 
training the network, as shown below.

The development of scanning transmission electron microscopy 
(STEM) poses new analysis challenges for researchers working in 
all fields of knowledge, including the investigation of supported 
catalysts. The huge number of visible particles in a single image 
is a difficult task for manual analysis. The use of neural networks 
has specifics regarding data labeling. Figure  1(a) shows the 
labeling of a STEM image of the Pd/Sibunite catalyst for training 
a neural network in DLgram. In a particular case, two crops were 
marked in regions with different contrast for better recognition. 
The training dataset consists of only 42  particles. Figure  1(b) 
shows the recognition result. It is clearly seen that all particles 
are well recognized: a total of 660 nanoparticles were found. The 
network falsely ‘found’ objects on the reference mark, but this is 
easily corrected in the LabelMe program. The analysis time is 
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machine learning is presented. Services aggregated in the iOk 
Platform significantly reduce the time spent on quantitative 
image analysis, decrease the influence of the subjective factor 
and increase the accuracy of the analysis by expanding the 
set of data that can be analyzed automatically. It is shown how the 
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allowing for measurements of thousands of objects in an image, 
as well as simultaneous analysis of objects of different types, 
namely: nanoparticles and single sites.
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†	 The iOk Platform is available at https://iok.nsu.ru/english/.
‡	 All of these services provide access to neural networks running on an 
HPE Apollo 6500 Gen10 server with eight NVIDIA Tesla V-100 graphics 
accelerators at the Institute of Intellectual Robototechnics at Novosibirsk 
State University.
§	 The modified LabelMe program is available at https://t.me/nanoparticles_
nsk/10115.
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reduced to minutes, and the model formed during the network 
training can be used to recognize similar images.

Recently, special attention has been paid to the consideration of 
single atoms and small clusters of the active component of catalysts 
(the so-called ‘single sites’) in the study of the mechanisms of 
catalytic reactions.13,14 For this purpose, the problem of simultaneous 
analysis of nanoparticles and single sites should be solved. This 
can be done by labeling two types of objects for training the neural 
network. In the case shown in Figure 2, three crops were marked. 
The dataset consists of one nanoparticle and 31  single sites. 
Seven particles and 283 single sites were recognized [Figure 2(b)]. 
One particle was classified as both a ‘particle’ and a ‘single site’, 
which is easily corrected in the LabelMe program. Obviously, 
not all small objects can be recognized by the neural network in 
such images of real catalysts, since not all of them can be clearly 
detected by the researcher’s eye. Since the sizes of such single 
sites are close to the resolution limit of the microscope, this problem 
can only be solved by further improving the setups and experimental 
conditions.

In conclusion, it should be noted that the described approach 
allows to significantly  increase the volume of processed data in 
a fully automatic mode, saving researchers’ time and significantly 
expanding the list of tasks to be solved. Modern progress in 
microscopic technology requires the use of deep neural networks 
for data analysis. The iOk Platform is a free and user-friendly 
image recognition tool that does not require coding skills and is 
available to researchers around the world.
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Figure  1  Object recognition using DLgram: (a) overview STEM image of 
Pd/Sibunite catalyst labeled for neural network training with red rectangles 
for crops and green contours for nanoparticles; (b) recognition result in the 
form of blue contours for recognized nanoparticles (brown arrows indicate 
incorrectly recognized objects).
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Figure  2  Object recognition using DLgram: (a) STEM image of Pd/Sibunite 
catalyst labeled for neural network training with red rectangles for crops, 
green contours for nanoparticles and yellow contours for single sites; 
(b) recognition result in the form of light lilac contours for nanoparticles and 
purple contours for single sites.


