Home / Publications / Temperature behavior of glucose oxidase immobilized into surface-attached stimuli-sensitive copolymer microgel

Temperature behavior of glucose oxidase immobilized into surface-attached stimuli-sensitive copolymer microgel

Olga Vladimirovna Efremova 1
Olga Vladimirovna Efremova
Dmitry Vladimirovich Pergushov
1 Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
Published 2023-06-13
CommunicationVolume 33, Issue 4, 559-561
9
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Sigolaeva L. V., Efremova O. V., Pergushov D. V. Temperature behavior of glucose oxidase immobilized into surface-attached stimuli-sensitive copolymer microgel // Mendeleev Communications. 2023. Vol. 33. No. 4. pp. 559-561.
GOST all authors (up to 50) Copy
Sigolaeva L. V., Efremova O. V., Pergushov D. V. Temperature behavior of glucose oxidase immobilized into surface-attached stimuli-sensitive copolymer microgel // Mendeleev Communications. 2023. Vol. 33. No. 4. pp. 559-561.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2023.06.038
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.06.038
TI - Temperature behavior of glucose oxidase immobilized into surface-attached stimuli-sensitive copolymer microgel
T2 - Mendeleev Communications
AU - Sigolaeva, Larisa Viktorovna
AU - Efremova, Olga Vladimirovna
AU - Pergushov, Dmitry Vladimirovich
PY - 2023
DA - 2023/06/13
PB - Mendeleev Communications
SP - 559-561
IS - 4
VL - 33
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Sigolaeva,
author = {Larisa Viktorovna Sigolaeva and Olga Vladimirovna Efremova and Dmitry Vladimirovich Pergushov},
title = {Temperature behavior of glucose oxidase immobilized into surface-attached stimuli-sensitive copolymer microgel},
journal = {Mendeleev Communications},
year = {2023},
volume = {33},
publisher = {Mendeleev Communications},
month = {Jun},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.06.038},
number = {4},
pages = {559--561},
doi = {10.1016/j.mencom.2023.06.038}
}
MLA
Cite this
MLA Copy
Sigolaeva, Larisa Viktorovna, et al. “Temperature behavior of glucose oxidase immobilized into surface-attached stimuli-sensitive copolymer microgel.” Mendeleev Communications, vol. 33, no. 4, Jun. 2023, pp. 559-561. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.06.038.

Keywords

enzymatic activity regulation
enzyme immobilization
glucose oxidase.
microgel
poly(N-isopropylacrylamide-co-N-(3-aminopropyl)methacrylamide)
stimuli-sensitivity

Abstract

Electrochemical responses of glucose oxidase loaded (via electrostatic immobilization) into a surface-attached pH- and temperature-sensitive copolymer microgel were examined. The observed temperature behavior of the immobilized enzyme provides evidence that such systems enable pH-dependent regulation of activity of glucose oxidase by a (repeated) temperature cycling, which reversibly transforms the polymeric (microgel) matrix from the swollen state to the collapsed one.

References

.
Orlova M.A., Spiridonov V.V., Badun G.A., Trofimova T.P., Orlov A.P., Zolotova A.S., Priselkova A.B., Aleshin G.Y., Chernysheva M.G., Yaroslavov A.A., Kalmykov S.N.
Mendeleev Communications, 2022
.
Functional Microgels and Microgel Systems
Plamper F.A., Richtering W.
Accounts of Chemical Research, 2017
.
Nanogels and Microgels: From Model Colloids to Applications, Recent Developments, and Future Trends
Karg M., Pich A., Hellweg T., Hoare T., Lyon L.A., Crassous J.J., Suzuki D., Gumerov R.A., Schneider S., Potemkin I.I., Richtering W.
Langmuir, 2019
.
Non-ionic Thermoresponsive Polymers in Water
Aseyev V., Tenhu H., Winnik F.M.
Advances in Polymer Science, 2010
.
Immobilization and characterization of ?-galactosidase in thermally reversible hydrogel beads
.
Temperature-sensitive aqueous microgels
Pelton R.
Advances in Colloid and Interface Science, 2000
.
Microgels enable capacious uptake and controlled release of architecturally complex macromolecular species
Walta S., Pergushov D.V., Oppermann A., Steinschulte A.A., Geisel K., Sigolaeva L.V., Plamper F.A., Wöll D., Richtering W.
Polymer, 2017
.
Surface Functionalization by Stimuli-Sensitive Microgels for Effective Enzyme Uptake and Rational Design of Biosensor Setups
Sigolaeva L., Pergushov D., Oelmann M., Schwarz S., Brugnoni M., Kurochkin I., Plamper F., Fery A., Richtering W.
Polymers, 2018
.
Dual-Stimuli-Sensitive Microgels as a Tool for Stimulated Spongelike Adsorption of Biomaterials for Biosensor Applications
Sigolaeva L.V., Gladyr S.Y., Gelissen A.P., Mergel O., Pergushov D.V., Kurochkin I.N., Plamper F.A., Richtering W.
Biomacromolecules, 2014
.
Enhanced Activity of Acetyl CoA Synthetase Adsorbed on Smart Microgel: an Implication for Precursor Biosynthesis
Dubey N.C., Tripathi B.P., Müller M., Stamm M., Ionov L.
ACS applied materials & interfaces, 2015
.
Engineering Systems with Spatially Separated Enzymes via Dual-Stimuli-Sensitive Properties of Microgels
Sigolaeva L.V., Mergel O., Evtushenko E.G., Gladyr S.Y., Gelissen A.P., Pergushov D.V., Kurochkin I.N., Plamper F.A., Richtering W.
Langmuir, 2015
.
Easy-Preparable Butyrylcholinesterase/Microgel Construct for Facilitated Organophosphate Biosensing
Sigolaeva L.V., Gladyr S.Y., Mergel O., Gelissen A.P., Noyong M., Simon U., Pergushov D.V., Kurochkin I.N., Plamper F.A., Richtering W.
Analytical Chemistry, 2017
.
Reversible Regulating the Substrate Specificity of Enzymes in Microgels by a Phase Transition in Polymer Networks
Wang Q., Wu Q., Ye T., Wang X., Qiu H., Xie J., Wang Y., Zhou S., Wu W.
ACS Macro Letters, 2021
.
Electroactive, Mediating and Thermosensitive Microgel Useful for Covalent Entrapment of Enzymes and Formation of Sensing Layer in Biosensors
Marcisz K., Kaniewska K., Mackiewicz M., Nowinska A., Romanski J., Stojek Z., Karbarz M.
Electroanalysis, 2018
.
Microgels in Tandem with Enzymes: Tuning Adsorption of a pH‐ and Thermoresponsive Microgel for Improved Design of Enzymatic Biosensors
Sigolaeva L.V., Pergushov D.V., Gladyr S.Y., Kurochkin I.N., Richtering W.
Advanced Materials Interfaces, 2022
.
Core–shell microgels as “smart” carriers for enzymes
Welsch N., Becker A.L., Dzubiella J., Ballauff M.
Soft Matter, 2012
.
Enzyme immobilisation in biocatalysis: why, what and how
Sheldon R.A., van Pelt S.
Chemical Society Reviews, 2013
.
A study of the complex interaction between poly allylamine hydrochloride and negatively charged poly(N-isopropylacrylamide-co-methacrylic acid) microgels
Giussi J.M., Martínez Moro M., Iborra A., Cortez M.L., Di Silvio D., Llarena Conde I., Longo G.S., Azzaroni O., Moya S.
Soft Matter, 2020
.
Sequential pH-Dependent Adsorption of Ionic Amphiphilic Diblock Copolymer Micelles and Choline Oxidase Onto Conductive Substrates: Toward the Design of Biosensors
Sigolaeva L.V., Günther U., Pergushov D.V., Gladyr S.Y., Kurochkin I.N., Schacher F.H.
Macromolecular Bioscience, 2014
.
Enzyme immobilization on smart polymers: Catalysis on demand
Cirillo G., Nicoletta F.P., Curcio M., Spizzirri U.G., Picci N., Iemma F.
Reactive and Functional Polymers, 2014
.
Interaction between lysozyme and colloidal poly(NIPAM-co-acrylic acid) microgels
Johansson C., Gernandt J., Bradley M., Vincent B., Hansson P.
Journal of Colloid and Interface Science, 2010
.
Loading of doxorubicin into surface-attached stimuli-responsive microgels and its subsequent release under different conditions
Pergushov D.V., Sigolaeva L.V., Balabushevich N.G., Sharifullin T.Z., Noyong M., Richtering W.
Polymer, 2021
.
Thermal Inactivation of Glucose Oxidase
Gouda M.D., Singh S.A., Rao A.G., Thakur M.S., Karanth N.G.
Journal of Biological Chemistry, 2003