Home / Publications / Substituted 3-aryl-4-nitroisoxazoles as potential blockers of the transport protein GLUT5: molecular design, synthesis and primary biotesting

Substituted 3-aryl-4-nitroisoxazoles as potential blockers of the transport protein GLUT5: molecular design, synthesis and primary biotesting

Nadezhda E. Astakhova 1
Nadezhda E. Astakhova
Maria S. Kuzmina 1
Maria S. Kuzmina
Valeriya Yur'evna Vasileva 4
Valeriya Yur'evna Vasileva
Vladislav Igorevich Chubinskiy-Nadezhdin
Oleg Stefanovich Medvedev
Published 2025-11-29
CommunicationVolume 36, Issue 1, 12-14
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Astakhova N. E. et al. Substituted 3-aryl-4-nitroisoxazoles as potential blockers of the transport protein GLUT5: molecular design, synthesis and primary biotesting // Mendeleev Communications. 2025. Vol. 36. No. 1. pp. 12-14.
GOST all authors (up to 50) Copy
Astakhova N. E., Kuzmina M. S., Vasilenko D. A., Shashurin D. A., Vasileva V. Y., Sudarikova A. V., Zefirov N. A., Averina E. B., Chubinskiy-Nadezhdin V. I., Milaeva E. R., Medvedev O. S., Zefirova O. N. Substituted 3-aryl-4-nitroisoxazoles as potential blockers of the transport protein GLUT5: molecular design, synthesis and primary biotesting // Mendeleev Communications. 2025. Vol. 36. No. 1. pp. 12-14.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.71267/mencom.7848
UR - https://mendcomm.colab.ws/publications/10.71267/mencom.7848
TI - Substituted 3-aryl-4-nitroisoxazoles as potential blockers of the transport protein GLUT5: molecular design, synthesis and primary biotesting
T2 - Mendeleev Communications
AU - Astakhova, Nadezhda E.
AU - Kuzmina, Maria S.
AU - Vasilenko, Dmitry Alekseevich
AU - Shashurin, Denis A
AU - Vasileva, Valeriya Yur'evna
AU - Sudarikova, Anastasia V
AU - Zefirov, Nikolay Alekseevich
AU - Averina, Elena Borisovna
AU - Chubinskiy-Nadezhdin, Vladislav Igorevich
AU - Milaeva, Elena Rudol'fovna
AU - Medvedev, Oleg Stefanovich
AU - Zefirova, Ol'ga Nikolaevna
PY - 2025
DA - 2025/11/29
PB - Mendeleev Communications
SP - 12-14
IS - 1
VL - 36
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Astakhova,
author = {Nadezhda E. Astakhova and Maria S. Kuzmina and Dmitry Alekseevich Vasilenko and Denis A Shashurin and Valeriya Yur'evna Vasileva and Anastasia V Sudarikova and Nikolay Alekseevich Zefirov and Elena Borisovna Averina and Vladislav Igorevich Chubinskiy-Nadezhdin and Elena Rudol'fovna Milaeva and Oleg Stefanovich Medvedev and Ol'ga Nikolaevna Zefirova},
title = {Substituted 3-aryl-4-nitroisoxazoles as potential blockers of the transport protein GLUT5: molecular design, synthesis and primary biotesting},
journal = {Mendeleev Communications},
year = {2025},
volume = {36},
publisher = {Mendeleev Communications},
month = {Nov},
url = {https://mendcomm.colab.ws/publications/10.71267/mencom.7848},
number = {1},
pages = {12--14},
doi = {10.71267/mencom.7848}
}
MLA
Cite this
MLA Copy
Astakhova, Nadezhda E., et al. “Substituted 3-aryl-4-nitroisoxazoles as potential blockers of the transport protein GLUT5: molecular design, synthesis and primary biotesting.” Mendeleev Communications, vol. 36, no. 1, Nov. 2025, pp. 12-14. https://mendcomm.colab.ws/publications/10.71267/mencom.7848.
Views
2

Keywords

3]dioxol-5-amine (MSNBA)
arenologues
cell line K562.
cyclovinylogues
cytotoxicity
fructose
GLUT5 inhibitors
N-(4-methylsulfonyl-2-nitrophenyl)benzo[d][1
nitroisoxazoles

Abstract

The structures of isoxazole-containing cyclovinylogues of the intracellular fructose transporter protein GLUT5 inhibitor, N-(4-methylsulfonyl-2-nitrophenyl)benzo[d][1,3]dioxol-5- amine (MSNBA) were designed. The target substituted 3,4,5-isoxazoles were synthesized using a method for converting isoxazole-containing enamines to nitriles by their treatment with tert-butyl nitrite in the presence of boron trifluoride etherate. Primary bioassay demonstrated the ability of the target compounds to inhibit the proliferation of chronic myelogenous leukemia cells K562 in medium containing fructose or glucose.

Funders

Ministry of Education and Science of the Russian Federation
121021000105-7

References

2.
Regulation of the fructose transporter GLUT5 in health and disease
Douard V., Ferraris R.P.
American Journal of Physiology - Endocrinology and Metabolism, 2008
3.
Passive fructose transporters in disease: a molecular overview of their structural specificity
McQuade D.T., Plutschack M.B., Seeberger P.H.
Organic and Biomolecular Chemistry, 2013
4.
Intestinal Absorption of Fructose
Ferraris R.P., Choe J., Patel C.R.
Annual Review of Nutrition, 2018
5.
Hexose Transporters in Cancer: From Multifunctionality to Diagnosis and Therapy
Echeverría C., Nualart F., Ferrada L., Smith G.J., Godoy A.S.
Trends in Endocrinology and Metabolism, 2021
7.
Discovery of a specific inhibitor of human GLUT5 by virtual screening and in vitro transport evaluation
George Thompson A.M., Ursu O., Babkin P., Iancu C.V., Whang A., Oprea T.I., Choe J.
Scientific Reports, 2016
9.
Molecular Design, Synthesis, and Primary Screening of Potential Blockers of the GLUT5 Transporter Protein
Nurieva E.V., Shashurin D.A., Chubinskiy-Nadezhdin V.I., Zefirov N.A., Nasher Ahkami K., Vasileva V.Y., Sudarikova A.V., Milaeva E.R., Medvedev O.S., Zefirova O.N.
Pharmaceutical Chemistry Journal, 2025
11.
Cyclovinylogues of Procainamide
Valenti P., Mazzotti M., Rampa A., Magistretti M.J.
Archiv der Pharmazie, 1982
12.
Design, Synthesis, and Biological Evaluation of the First Podophyllotoxin Analogues as Potential Vascular-Disrupting Agents
Labruère R., Gautier B., Testud M., Seguin J., Lenoir C., Desbène-Finck S., Helissey P., Garbay C., Chabot G.G., Vidal M., Giorgi-Renault S.
ChemMedChem, 2010
13.
Synthesis of 4-Nitroisoxazoles via NO/NO2-Mediated Heterocyclization of Aryl-Substituted α,β-Unsaturated Ketones
Averina E.B., Vasilenko D.A., Sadovnikov K.S., Sedenkova K.N., Kurova A.V., Grishin Y.K., Kuznetsova T.S., Rybakov V.B., Volkova Y.A.
Synthesis, 2020
14.
Nurieva E.V., Alexeev A.A., Zefirov N.A., Milaeva E.R., Kovaleva N.V., Proshin A.N., Makhaeva G.F., Zefirova O.N.
Mendeleev Communications, 2023
15.
Zefirov N.A., Nurieva E.V., Elisseev I.A., Khasanov S.A., Niukalova M.A., Zarubaev V.V., Zefirova O.N.
Mendeleev Communications, 2025
16.
Structure and mechanism of the mammalian fructose transporter GLUT5
Nomura N., Verdon G., Kang H.J., Shimamura T., Nomura Y., Sonoda Y., Hussien S.A., Qureshi A.A., Coincon M., Sato Y., Abe H., Nakada-Nakura Y., Hino T., Arakawa T., Kusano-Arai O., et. al.
Nature, 2015
18.
UCSF Chimera?A visualization system for exploratory research and analysis
Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E.
Journal of Computational Chemistry, 2004
19.
5‐Styrylisoxazoles: π‐Conjugated System with Fluorescent Properties and Bioactivity
Sadovnikov K.S., Vasilenko D.A., Gracheva Y.A., Grishin Y.K., Roznyatovsky V.A., Tafeenko V.A., Astakhova N.E., Burtsev I.D., Milaeva E.R., Averina E.B.
ChemistrySelect, 2023
20.
tert-BuONO-Promoted Nitrosation of 4-Nitroisoxazole-Based Enamines: Synthesis of 5-Cyanoisoxazoles and Their Application
Astakhova N.E., Vasilenko D.A., Kuzmina M.S., Pupeza A.K., Grishin Y.K., Tafeenko V.A., Averina E.B.
Journal of Organic Chemistry, 2025
21.
Enhanced Fructose Utilization Mediated by SLC2A5 Is a Unique Metabolic Feature of Acute Myeloid Leukemia with Therapeutic Potential
Chen W., Wang Y., Zhao A., Xia L., Xie G., Su M., Zhao L., Liu J., Qu C., Wei R., Rajani C., Ni Y., Cheng Z., Chen Z., Chen S., et. al.
Cancer Cell, 2016