Home / Publications / Assessment of perovskite solar cells stability under continuous illumination via maximum power point tracking trends analysis

Assessment of perovskite solar cells stability under continuous illumination via maximum power point tracking trends analysis

Ekaterina Igorevna Marchenko
Nikolay Andreevich Belich 1
Nikolay Andreevich Belich
Pavel Andreevich Ivlev 1
Pavel Andreevich Ivlev
Chengyuan Wang 1
Chengyuan Wang
Yumao Li 1
Yumao Li
Aleksei Borisovich Tarasov 1, 3
Aleksei Borisovich Tarasov
Published 2025-11-29
CommunicationVolume 36, Issue 1, 88-91
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Marchenko E. I. et al. Assessment of perovskite solar cells stability under continuous illumination via maximum power point tracking trends analysis // Mendeleev Communications. 2025. Vol. 36. No. 1. pp. 88-91.
GOST all authors (up to 50) Copy
Marchenko E. I., Shlenskaya N. N., Belich N. A., Udalova N. N., Ivlev P. A., Wang C., Li Y., Goodilin E., Tarasov A. B. Assessment of perovskite solar cells stability under continuous illumination via maximum power point tracking trends analysis // Mendeleev Communications. 2025. Vol. 36. No. 1. pp. 88-91.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.71267/mencom.7816
UR - https://mendcomm.colab.ws/publications/10.71267/mencom.7816
TI - Assessment of perovskite solar cells stability under continuous illumination via maximum power point tracking trends analysis
T2 - Mendeleev Communications
AU - Marchenko, Ekaterina Igorevna
AU - Shlenskaya, Natalia N.
AU - Belich, Nikolay Andreevich
AU - Udalova, Natalia Nikolaevna
AU - Ivlev, Pavel Andreevich
AU - Wang, Chengyuan
AU - Li, Yumao
AU - Goodilin, Eugene
AU - Tarasov, Aleksei Borisovich
PY - 2025
DA - 2025/11/29
PB - Mendeleev Communications
SP - 88-91
IS - 1
VL - 36
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Marchenko,
author = {Ekaterina Igorevna Marchenko and Natalia N. Shlenskaya and Nikolay Andreevich Belich and Natalia Nikolaevna Udalova and Pavel Andreevich Ivlev and Chengyuan Wang and Yumao Li and Eugene Goodilin and Aleksei Borisovich Tarasov},
title = {Assessment of perovskite solar cells stability under continuous illumination via maximum power point tracking trends analysis},
journal = {Mendeleev Communications},
year = {2025},
volume = {36},
publisher = {Mendeleev Communications},
month = {Nov},
url = {https://mendcomm.colab.ws/publications/10.71267/mencom.7816},
number = {1},
pages = {88--91},
doi = {10.71267/mencom.7816}
}
MLA
Cite this
MLA Copy
Marchenko, Ekaterina Igorevna, et al. “Assessment of perovskite solar cells stability under continuous illumination via maximum power point tracking trends analysis.” Mendeleev Communications, vol. 36, no. 1, Nov. 2025, pp. 88-91. https://mendcomm.colab.ws/publications/10.71267/mencom.7816.
Views / Downloads
6 / 4

Keywords

continuous irradiation.
degradation trends
efficiency of devices
hybrid halide perovskites
perovskite solar cells
stability

Abstract

The most common metric of perovskite solar cell stability, namely the time until the device loses 20% of its initial power conversion efficiency (T80), was found to be oversimplified. As a much more reliable tool, a simultaneous analysis of the T80 and T50 metrics can be recommended. This makes it possible to distinguish between the stages of reversible and irreversible degradation of perovskite solar cells by the time until the device loses 20 and 50% of its initial power conversion efficiency, respectively.

Funders

Russian Science Foundation
24-73-00308

References

1.
Design and Cost Analysis of 100 MW Perovskite Solar Panel Manufacturing Process in Different Locations
Čulík P., Brooks K., Momblona C., Adams M., Kinge S., Maréchal F., Dyson P.J., Nazeeruddin M.K.
ACS Energy Letters, 2022
2.
The levelized cost of electricity of perovskite photovoltaics
De Bastiani M., Larini V., Montecucco R., Grancini G.
Energy and Environmental Science, 2023
3.
Perovskite Solar Cell Stability in Humid Air: Partially Reversible Phase Transitions in the PbI2-CH3NH3I-H2O System
Song Z., Abate A., Watthage S.C., Liyanage G.K., Phillips A.B., Steiner U., Graetzel M., Heben M.J.
Advanced Energy Materials, 2016
4.
The Role of Oxygen in the Degradation of Methylammonium Lead Trihalide Perovskite Photoactive Layers
Aristidou N., Sanchez-Molina I., Chotchuangchutchaval T., Brown M., Martinez L., Rath T., Haque S.A.
Angewandte Chemie - International Edition, 2015
5.
Influence of Radiation on the Properties and the Stability of Hybrid Perovskites
Lang F., Shargaieva O., Brus V.V., Neitzert H.C., Rappich J., Nickel N.H.
Advanced Materials, 2017
6.
Investigation of Thermally Induced Degradation in CH3NH3PbI3 Perovskite Solar Cells using In-situ Synchrotron Radiation Analysis
Kim N., Min Y.H., Noh S., Cho E., Jeong G., Joo M., Ahn S., Lee J.S., Kim S., Ihm K., Ahn H., Kang Y., Lee H., Kim D.
Scientific Reports, 2017
7.
Nonmonotonic Photostability of BA2MAn-1PbnI3n+1 Homologous Layered Perovskites.
Udalova N.N., Fateev S.A., Nemygina E.M., Zanetta A., Grancini G., Goodilin E.A., Tarasov A.B.
ACS applied materials & interfaces, 2021
8.
Udalova N.N., Petrov A.A., Nemygina E.M., Plukchi K.R., Goodilin E.A., Tarasov A.B.
Mendeleev Communications, 2024
9.
Nemygina E.M., Udalova N.N., Marchenko E.I., Moskalenko A.K., Goodilin E.A., Tarasov A.B.
Mendeleev Communications, 2024
10.
Compact Meldonium Zwitterion as a Promising Multifunctional Surface Passivator for Perovskite Solar Cells with Increased Stability
Udalova N.N., Nemygina E.M., Petrov A.A., Marchenko E.I., Ibragimov E.S., Belyaeva A.O., Tutantsev A.S., Belich N.A., Ivlev P.A., Goodilin E.A., Tarasov A.B.
ACS Applied Energy Materials, 2025
11.
Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures
Khenkin M.V., Katz E.A., Abate A., Bardizza G., Berry J.J., Brabec C., Brunetti F., Bulović V., Burlingame Q., Di Carlo A., Cheacharoen R., Cheng Y., Colsmann A., Cros S., Domanski K., et. al.
Nature Energy, 2020
12.
How to stabilize standard perovskite solar cells to withstand operating conditions under an ambient environment for more than 1000 hours using simple and universal encapsulation
13.
New Features of Photochemical Decomposition of Hybrid Lead Halide Perovskites by Laser Irradiation
Udalova N.N., Tutantsev A.S., Chen Q., Kraskov A., Goodilin E.A., Tarasov A.B.
ACS applied materials & interfaces, 2020
14.
New Aspects of Copper Electrode Metamorphosis in Perovskite Solar Cells
Udalova N.N., Nemygina E.M., Zharenova E.A., Tutantsev A.S., Sudakov A.A., Grishko A.Y., Belich N.A., Goodilin E.A., Tarasov A.B.
Journal of Physical Chemistry C, 2020
15.
Light-induced reactivity of gold and hybrid perovskite as a new possible degradation mechanism in perovskite solar cells
Shlenskaya N., Belich N.A., Grätzel M., Goodilin E.A., Tarasov A.B.
Journal of Materials Chemistry A, 2018
16.
Evolution of defects during the degradation of metal halide perovskite solar cells under reverse bias and illumination
Ni Z., Jiao H., Fei C., Gu H., Xu S., Yu Z., Yang G., Deng Y., Jiang Q., Liu Y., Yan Y., Huang J.
Nature Energy, 2021
17.
Understanding and decoupling the role of wavelength and defects in light-induced degradation of metal-halide perovskites
Hieulle J., Krishna A., Boziki A., Audinot J., Farooq M.U., Machado J.F., Mladenović M., Phirke H., Singh A., Wirtz T., Tkatchenko A., Graetzel M., Hagfeldt A., Redinger A.
Energy and Environmental Science, 2024
18.
The challenge of studying perovskite solar cells’ stability with machine learning
Graniero P., Khenkin M., Köbler H., Hartono N.T., Schlatmann R., Abate A., Unger E., Jacobsson T.J., Ulbrich C.
Frontiers in Energy Research, 2023
19.
Procedures and Practices for Evaluating Thin‐Film Solar Cell Stability
Roesch R., Faber T., von Hauff E., Brown T.M., Lira-Cantu M., Hoppe H.
Advanced Energy Materials, 2015
20.
Highly efficient p-i-n perovskite solar cells that endure temperature variations
Li G., Su Z., Canil L., Hughes D., Aldamasy M.H., Dagar J., Trofimov S., Wang L., Zuo W., Jerónimo-Rendon J.J., Byranvand M.M., Wang C., Zhu R., Zhang Z., Yang F., et. al.
Science, 2023
21.
Hysteresis phenomena in perovskite solar cells: the many and varied effects of ionic accumulation
Jacobs D.A., Wu Y., Shen H., Barugkin C., Beck F.J., White T.P., Weber K., Catchpole K.R.
Physical Chemistry Chemical Physics, 2017
22.
Ion-induced field screening as a dominant factor in perovskite solar cell operational stability
Thiesbrummel J., Shah S., Gutierrez-Partida E., Zu F., Peña-Camargo F., Zeiske S., Diekmann J., Ye F., Peters K.P., Brinkmann K.O., Caprioglio P., Dasgupta A., Seo S., Adeleye F.A., Warby J., et. al.
Nature Energy, 2024
24.
Quantification of Efficiency Losses Due to Mobile Ions in Perovskite Solar Cells via Fast Hysteresis Measurements
Le Corre V.M., Diekmann J., Peña-Camargo F., Thiesbrummel J., Tokmoldin N., Gutierrez-Partida E., Peters K.P., Perdigón-Toro L., Futscher M.H., Lang F., Warby J., Snaith H.J., Neher D., Stolterfoht M.
Solar RRL, 2022
25.
Large tunable photoeffect on ion conduction in halide perovskites and implications for photodecomposition
Kim G.Y., Senocrate A., Yang T., Gregori G., Grätzel M., Maier J.
Nature Materials, 2018
27.
Photo-stability of perovskite solar cells with Cu electrode
Chauhan A.K., Kumar P.
Journal of Materials Science: Materials in Electronics, 2019