Keywords
charge carrier mobility
DFT
luminescence
organic electronics
organic field-effect transistors.
Abstract
A novel multiresonant fluorophore 2,5,10,13-tetraphenyldiindolo[3,2,1-de:3',2',1'-kl]phenazine was investigated computationally using (TD)DFT, synthesized and characterized; it emits blue light with a photoluminescence maximum at 436 nm and a quantum yield of 67%. Organic field-effect transistors based on this compound as an organic semiconductor showed a significant hole mobility of up to 0.023 cm2 V−1 s−1, highlighting the potential of multiresonant fluorophores as multifunctional compounds that can be used in both charge-transporting and light-emitting layers of organic (opto)electronic devices.
Funders
Russian Science Foundation
24-49-02038, 22-72-10056
References
2.
Köhler A., Bässler H.
2015
3.
Dong H., Wang C., Hu W.
Chemical Communications,
2010
4.
Ostroverkhova O.
Chemical Reviews,
2016
5.
Maria Angela V., Anjali A., Harshini D., Nagarajan S.
ACS Applied Electronic Materials,
2021
7.
Li Y., Coropceanu V., Brédas J.
Materials and Energy,
2016
8.
Coropceanu V., Cornil J., da Silva Filho D.A., Olivier Y., Silbey R., Brédas J.
Chemical Reviews,
2007
9.
Kang J., Shin D.J., Lee J.Y.
Advanced Optical Materials,
2025
10.
Cai X., Su S.
Advanced Functional Materials,
2018
11.
Meng G., Zhang D., Wei J., Zhang Y., Huang T., Liu Z., Yin C., Hong X., Wang X., Zeng X., Yang D., Ma D., Li G., Duan L.
Chemical Science,
2022
12.
Dubinets N.O., Sosorev A.Y.
Molecules,
2025
13.
Cheng C., Zhu Y., Tsuboi T., Deng C., Lou W., Liu T., Wang D., Zhang Q.
Chemical Engineering Journal,
2023
14.
Mamada M., Hayakawa M., Ochi J., Hatakeyama T.
Chemical Society Reviews,
2024
15.
Wu X., Ni S., Wang C., Zhu W., Chou P.
Chemical Reviews,
2025
16.
Marcus R.A., Sutin N.
Biochimica et Biophysica Acta (BBA) - Reviews on Bioenergetics,
1985
17.
Shuai Z., Wang L., Song C.
SpringerBriefs in Molecular Science,
2012
18.
Lee C., Yang W., Parr R.G.
Physical Review B,
1988
19.
Schäfer A., Horn H., Ahlrichs R.
Journal of Chemical Physics,
1992
20.
Grimme S., Ehrlich S., Goerigk L.
Journal of Computational Chemistry,
2011
21.
Weigend F., Ahlrichs R.
Physical Chemistry Chemical Physics,
2005
22.
Neese F.
Wiley Interdisciplinary Reviews: Computational Molecular Science,
2022
23.
Zhou K., Dong H., Zhang H., Hu W.
Physical Chemistry Chemical Physics,
2014
24.
Naibi Lakshminarayana A., Ong A., Chi C.
Journal of Materials Chemistry C,
2018
25.
Sosorev A.Y., Trukhanov V.A., Skorotetcky M.S., Polyakov R.A., Konstantinov V.G., Dominskiy D.I., Tafeenko V.A., Borshchev O.V., Ponomarenko S.A., Paraschuk D.Y.
Journal of Physical Chemistry C,
2025
26.
Kotadiya N.B., Mondal A., Blom P.W., Andrienko D., Wetzelaer G.A.
Nature Materials,
2019
27.
Sosorev A.Y.
Materials and Design,
2020
28.
Kirkpatrick J.
International Journal of Quantum Chemistry,
2007
29.
Liu B., Chen Z., Lin L., Han Y., Pang J., Jiang Z.
High Performance Polymers,
2016
30.
Tian B., Zerbi G.
Journal of Chemical Physics,
1990
31.
Heimel G., Somitsch D., Knoll P., Brédas J., Zojer E.
Journal of Chemical Physics,
2005
32.
Nuraliev M.K., Parashchuk O.D., Tukachev N.V., Repeev Y.A., Maslennikov D.R., Borshchev O.V., Vainer Y.G., Paraschuk D.Y., Sosorev A.Y.
Journal of Chemical Physics,
2020
33.
Sosorev A.Y.
Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika),
2019
34.
Korchkova S.N., Sosorev A.Y.
Moscow University Physics Bulletin (English Translation of Vestnik Moskovskogo Universiteta, Fizika),
2023
35.
Moreno Castro C., Ruiz Delgado M.C., Hernández V., Hotta S., Casado J., López Navarrete J.T.
Journal of Chemical Physics,
2002
36.
Kakinuma T., Kojima H., Ashizawa M., Matsumoto H., Mori T.
Journal of Materials Chemistry C,
2013
37.
Maslennikov D.R., Dominskiy D.I., Sosorev A.Y., Trukhanov V.A., Konstantinov V.G., Sorokina N.I., Borshchev O.V., Skorotetcky M.S., Ponomarenko S.A., Paraschuk D.Y.
Journal of Physical Chemistry C,
2024