Home / Publications / Ceramic materials based on magnesium orthophosphate for biomedical applications

Ceramic materials based on magnesium orthophosphate for biomedical applications

Ilya Ivanovich Preobrazhenskiy
Albina M. Murashko 1
Albina M. Murashko
Elena Sergeevna Klimashina 1
Elena Sergeevna Klimashina
Yaroslav Yur'evich Filippov 1
Yaroslav Yur'evich Filippov
Pavel Vladimirovich Evdokimov 1, 3
Pavel Vladimirovich Evdokimov
Valerii Ivanovich Putlayev 1
Valerii Ivanovich Putlayev
Published 2025-07-17
CommunicationVolume 35, Issue 5, 614-616
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Preobrazhenskiy I. I. et al. Ceramic materials based on magnesium orthophosphate for biomedical applications // Mendeleev Communications. 2025. Vol. 35. No. 5. pp. 614-616.
GOST all authors (up to 50) Copy
Preobrazhenskiy I. I., Deyneko D. V., Murashko A. M., Klimashina E. S., Filippov Y. Y., Evdokimov P. V., Putlayev V. I. Ceramic materials based on magnesium orthophosphate for biomedical applications // Mendeleev Communications. 2025. Vol. 35. No. 5. pp. 614-616.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.71267/mencom.7716
UR - https://mendcomm.colab.ws/publications/10.71267/mencom.7716
TI - Ceramic materials based on magnesium orthophosphate for biomedical applications
T2 - Mendeleev Communications
AU - Preobrazhenskiy, Ilya Ivanovich
AU - Deyneko, Dina Valer'evna
AU - Murashko, Albina M.
AU - Klimashina, Elena Sergeevna
AU - Filippov, Yaroslav Yur'evich
AU - Evdokimov, Pavel Vladimirovich
AU - Putlayev, Valerii Ivanovich
PY - 2025
DA - 2025/07/17
PB - Mendeleev Communications
SP - 614-616
IS - 5
VL - 35
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Preobrazhenskiy,
author = {Ilya Ivanovich Preobrazhenskiy and Dina Valer'evna Deyneko and Albina M. Murashko and Elena Sergeevna Klimashina and Yaroslav Yur'evich Filippov and Pavel Vladimirovich Evdokimov and Valerii Ivanovich Putlayev},
title = {Ceramic materials based on magnesium orthophosphate for biomedical applications},
journal = {Mendeleev Communications},
year = {2025},
volume = {35},
publisher = {Mendeleev Communications},
month = {Jul},
url = {https://mendcomm.colab.ws/publications/10.71267/mencom.7716},
number = {5},
pages = {614--616},
doi = {10.71267/mencom.7716}
}
MLA
Cite this
MLA Copy
Preobrazhenskiy, Ilya Ivanovich, et al. “Ceramic materials based on magnesium orthophosphate for biomedical applications.” Mendeleev Communications, vol. 35, no. 5, Jul. 2025, pp. 614-616. https://mendcomm.colab.ws/publications/10.71267/mencom.7716.

Keywords

bioceramics
bone defects
magnesium orthophosphate
microstructure
regenerative medicine
sintering.

Abstract

Magnesium orthophosphate, Mg3(PO4)2, was synthesized via the solid-phase method, the ceramic material based on Mg3(PO4)2 was obtained and the physicochemical properties of the ceramic were studied. The dependence of the changes in the microstructure and density on the sintering temperature in the range of 900 and 1250 °C was investigated.

Funders

Russian Science Foundation
24-29-00396

References

.
Synthesis and Properties of Manganese-Containing Calcium Phosphate Materials
Fadeeva I.V., Fomin A.S., Barinov S.M., Davydova G.A., Selezneva I.I., Preobrazhenskii I.I., Rusakov M.K., Fomina A.A., Volchenkova V.A.
Inorganic Materials, 2020
.
3D Printing of Hydrogel-Based Biocompatible Materials
Preobrazhenskii I.I., Putlyaev V.I.
Russian Journal of Applied Chemistry, 2022
.
Preobrazhenskiy I.I., Putlyaev V.I.
Mendeleev Communications, 2023
.
X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods
Khorsand Zak A., Abd. Majid W.H., Abrishami M.E., Yousefi R.
Solid State Sciences, 2011
.
Improved cytocompatibility and antibacterial properties of zinc-substituted brushite bone cement based on β-tricalcium phosphate
Fadeeva I.V., Goldberg M.A., Preobrazhensky I.I., Mamin G.V., Davidova G.A., Agafonova N.V., Fosca M., Russo F., Barinov S.M., Cavalu S., Rau J.V.
Journal of Materials Science: Materials in Medicine, 2021
.
Size–strain line-broadening analysis of the ceria round-robin sample
Balzar D., Audebrand N., Daymond M.R., Fitch A., Hewat A., Langford J.I., Le Bail A., Louër D., Masson O., McCowan C.N., Popa N.C., Stephens P.W., Toby B.H.
Journal of Applied Crystallography, 2004
.
Influence of Synthesis Conditions on Gadolinium-Substituted Tricalcium Phosphate Ceramics and Its Physicochemical, Biological, and Antibacterial Properties
Fadeeva I.V., Deyneko D.V., Barbaro K., Davydova G.A., Sadovnikova M.A., Murzakhanov F.F., Fomin A.S., Yankova V.G., Antoniac I.V., Barinov S.M., Lazoryak B.I., Rau J.V.
Nanomaterials, 2022
.
The Effects of Calcium, Magnesium, Phosphorus, Fluoride, and Lead on Bone Tissue
Ciosek Ż., Kot K., Kosik-Bogacka D., Łanocha-Arendarczyk N., Rotter I.
Biomolecules, 2021
.
Toughening of Bioceramic Composites for Bone Regeneration
Abbas Z., Dapporto M., Tampieri A., Sprio S.
Journal of Composites Science, 2021
.
Magnesium and Human Health: Perspectives and Research Directions
Al Alawi A.M., Majoni S.W., Falhammar H.
International Journal of Endocrinology, 2018
.
Kidney stones
Khan S.R., Pearle M.S., Robertson W.G., Gambaro G., Canales B.K., Doizi S., Traxer O., Tiselius H.
Nature Reviews Disease Primers, 2016
.
Synthesis and characterization of a novel Mg3(PO4)2 ceramic with low dielectric constant
Zhang S., Li L., Lv X.
Journal of Materials Science: Materials in Electronics, 2016
.
On the analysis of grain size in bulk nanocrystalline materials via x-ray diffraction
Zhang Z., Zhou F., Lavernia E.J.
Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003
.
Hydraulic setting Mg3(PO4)2powders for 3D printing technology
Vorndran E., Wunder K., Moseke C., Biermann I., Müller F.A., Zorn K., Gbureck U.
Advances in Applied Ceramics, 2011
.
DLP printing of hydrogel/calcium phosphate composites for the treatment of bone defects
Preobrazhenskiy I.I., Tikhonov A.A., Evdokimov P.V., Shibaev A.V., Putlyaev V.I.
Open Ceramics, 2021
.
Biomaterials for orthopedic applications and techniques to improve corrosion resistance and mechanical properties for magnesium alloy: a review
Gutiérrez Púa L.D., Rincón Montenegro J.C., Fonseca Reyes A.M., Zambrano Rodríguez H., Paredes Méndez V.N.
Journal of Materials Science, 2023
.
Synthetic polymers as bone engineering scaffold
Javid‐Naderi M.J., Behravan J., Karimi‐Hajishohreh N., Toosi S.
Polymers for Advanced Technologies, 2023
.
Antibacterial Composite Material Based on Polyhydroxybutyrate and Zn-Doped Brushite Cement
Fadeeva I.V., Deyneko D.V., Knotko A.V., Olkhov A.A., Slukin P.V., Davydova G.A., Trubitsyna T.A., Preobrazhenskiy I.I., Gosteva A.N., Antoniac I.V., Rau J.V.
Polymers, 2023
.
Study of magnesium-sodium double phosphates ceramic for bone treatment
Preobrazhenskiy I.I., Deyneko D.V., Titkov V.V., Murashko A.M., Putlyaev V.I.
Ceramics International, 2023
.
Enhancing biocement precipitation potential of locally isolated soil ureolytic bacteria using seawater
Ahmad N.A., Husin N.B., Mohd Noh N.I., Zakaria Z.
Materials Today: Proceedings, 2024
.
Experimental Study of the Binary System Mg3(PO4)2–Mg4Na(PO4)3
Preobrazhenskiy I.I., Filippov Y.Y., Evdokimov P.V., Putlyaev V.I.
Inorganic Materials, 2023
.
Bioceramic modular tissue-engineered bone with rapid vascularization for large bone defects
Luo S., Wang Z., He J., Tang G., Yuan D., Wu Z., Zou Z., Yang L., Lu T., Ye C.
Ceramics International, 2024
.
Bioceramic materials in bone-implantable drug delivery systems: A review
Nayak A.K., Maity M., Barik H., Behera S.S., Dhara A.K., Hasnain M.S.
Journal of Drug Delivery Science and Technology, 2024
.
A Bioactive Degradable Composite Bone Cement Based on Calcium Sulfate and Magnesium Polyphosphate
Peng S., Yang X., Zou W., Chen X., Deng H., Zhang Q., Yan Y.
Materials, 2024