Home / Publications / Tandem Knoevenagel–Michael reaction with oxidative cyclization in the synthesis of spiro[furo[3,2-c]pyran-2,5′ -pyrimidine] scaffold

Tandem Knoevenagel–Michael reaction with oxidative cyclization in the synthesis of spiro[furo[3,2-c]pyran-2,5′ -pyrimidine] scaffold

Anatoly Nikolaevich Vereshchagin 1
Anatoly Nikolaevich Vereshchagin
Yuliya Evgenievna Ryzhkova 1
Yuliya Evgenievna Ryzhkova
Kirill Anatol'evich Karpenko 1
Kirill Anatol'evich Karpenko
Varvara Mikhailovna Kalashnikova 1
Varvara Mikhailovna Kalashnikova
Mikhail Petrovich Egorov 1
Mikhail Petrovich Egorov
Published 2025-03-31
CommunicationVolume 35, Issue 3, 255-257
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Elinson M. N. et al. Tandem Knoevenagel–Michael reaction with oxidative cyclization in the synthesis of spiro[furo[3,2-c]pyran-2,5′ -pyrimidine] scaffold // Mendeleev Communications. 2025. Vol. 35. No. 3. pp. 255-257.
GOST all authors (up to 50) Copy
Elinson M. N., Vereshchagin A. N., Ryzhkova Y. E., Karpenko K. A., Kalashnikova V. M., Egorov M. P. Tandem Knoevenagel–Michael reaction with oxidative cyclization in the synthesis of spiro[furo[3,2-c]pyran-2,5′ -pyrimidine] scaffold // Mendeleev Communications. 2025. Vol. 35. No. 3. pp. 255-257.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.71267/mencom.7660
UR - https://mendcomm.colab.ws/publications/10.71267/mencom.7660
TI - Tandem Knoevenagel–Michael reaction with oxidative cyclization in the synthesis of spiro[furo[3,2-c]pyran-2,5′ -pyrimidine] scaffold
T2 - Mendeleev Communications
AU - Elinson, Michail Nikolaevich
AU - Vereshchagin, Anatoly Nikolaevich
AU - Ryzhkova, Yuliya Evgenievna
AU - Karpenko, Kirill Anatol'evich
AU - Kalashnikova, Varvara Mikhailovna
AU - Egorov, Mikhail Petrovich
PY - 2025
DA - 2025/03/31
PB - Mendeleev Communications
SP - 255-257
IS - 3
VL - 35
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Elinson,
author = {Michail Nikolaevich Elinson and Anatoly Nikolaevich Vereshchagin and Yuliya Evgenievna Ryzhkova and Kirill Anatol'evich Karpenko and Varvara Mikhailovna Kalashnikova and Mikhail Petrovich Egorov},
title = {Tandem Knoevenagel–Michael reaction with oxidative cyclization in the synthesis of spiro[furo[3,2-c]pyran-2,5′ -pyrimidine] scaffold},
journal = {Mendeleev Communications},
year = {2025},
volume = {35},
publisher = {Mendeleev Communications},
month = {Mar},
url = {https://mendcomm.colab.ws/publications/10.71267/mencom.7660},
number = {3},
pages = {255--257},
doi = {10.71267/mencom.7660}
}
MLA
Cite this
MLA Copy
Elinson, Michail Nikolaevich, et al. “Tandem Knoevenagel–Michael reaction with oxidative cyclization in the synthesis of spiro[furo[3,2-c]pyran-2,5′ -pyrimidine] scaffold.” Mendeleev Communications, vol. 35, no. 3, Mar. 2025, pp. 255-257. https://mendcomm.colab.ws/publications/10.71267/mencom.7660.

Keywords

N-bromosuccinimide
4-hydroxy-6-methyl-2H-pyran-2-one
barbituric acids
benzaldehydes
Cyclization
multicomponent reactions
tandem Knoevenagel--Michael reaction

Abstract

The new multicomponent one-pot tandem Knoevenagel–Michael reaction between aromatic aldehydes, N,N'-dimethylbarbituric acid, and 4-hydroxy-6-methyl-2H-pyran-2-one proceeds in alcohols at ambient temperature to selectively afford new substituted unsymmetrical spiro-[furo[3,2-c]pyran-2,5'-pyrimidine] derivatives with two different heterocyclic rings. The procedure involves available non-expensive reactants, mild and convenient conditions, does not require chromatographic isolation and provides excellent yields. The compounds thus obtained are promising for different biomedical applications.

References

1.
The use of spirocyclic scaffolds in drug discovery
Zheng Y., Tice C.M., Singh S.B.
Bioorganic and Medicinal Chemistry Letters, 2014
2.
Charting Biologically Relevant Spirocyclic Compound Space.
Müller G., Berkenbosch T., Benningshof J.C., Stumpfe D., Bajorath J.
Chemistry - A European Journal, 2016
3.
Consecutive multicomponent reactions for the synthesis of complex molecules.
Zhi S., Ma X., Zhang W.
Organic and Biomolecular Chemistry, 2019
5.
Natural Product-like Combinatorial Libraries Based on Privileged Structures. 1. General Principles and Solid-Phase Synthesis of Benzopyrans
Nicolaou K.C., Pfefferkorn J.A., Roecker A.J., Cao G.-., Barluenga S., Mitchell H.J.
Journal of the American Chemical Society, 2000
9.
Use of Bromine and Bromo-Organic Compounds in Organic Synthesis
11.
Spirocyclic Scaffolds in Medicinal Chemistry
Hiesinger K., Dar’in D., Proschak E., Krasavin M.
Journal of Medicinal Chemistry, 2020
13.
Towards resource efficient chemistry: tandem reactions with renewables
Behr A., Vorholt A.J., Ostrowski K.A., Seidensticker T.
Green Chemistry, 2014
14.
Metal-free tandem reaction synthesis of spiro-cyclopropyl fused pyrazolin-5-one derivatives
Liu M., Liu C., Zhang J., Xu Y., Dong L.
Organic Chemistry Frontiers, 2019
16.
Pyrimidine-2,4,6-Triones: A New Effective and Selective Class of Matrix Metalloproteinase Inhibitors
Grams F., Brandstetter H., DAlò S., Geppert D., Krell H., Leinert H., Livi V., Menta E., Oliva A., Zimmermann G.
Biological Chemistry, 2001
19.
Multicomponent assembling of salicylaldehydes, malononitrile, and 4-hydroxy-6-methyl-2H-pyran-2-one: A fast and efficient approach to medicinally relevant 2-amino-4H-chromene scaffold
Vereshchagin A.N., Elinson M.N., Ryzhkov F.V., Nasybullin R.F., Bobrovsky S.I., Goloveshkin A.S., Egorov M.P.
Comptes Rendus Chimie, 2015
20.
Elinson M.N., Medvedev M.G., Ilovaisky A.I., Merkulova V.M., Zaimovskaya T.A., Nikishin G.I.
Mendeleev Communications, 2013
21.
A new type of cascade reaction: direct conversion of carbonyl compounds and malononitrile into substituted tetracyanocyclopropanes
Elinson M.N., Vereshchagin A.N., Stepanov N.O., Ilovaisky A.I., Vorontsov A.Y., Nikishin G.I.
Tetrahedron, 2009
23.
Multicomponent design of chromeno[2,3-b]pyridine systems
Elinson M.N., Ryzhkova Y.E., Ryzhkov F.V.
Russian Chemical Reviews, 2021
24.
Nonpeptidic HIV protease inhibitors: 3-(S-benzyl substituted)-4-hydroxy-6-(phenyl substituted)-2H-pyran-2-one with an inverse mode of binding
Vara Prasad J.V., Pavlovsky A., Para K.S., Ellsworth E.L., Tummino P.J., Nouhan C., Ferguson D.
Bioorganic and Medicinal Chemistry Letters, 1996
25.
Examining barbiturate scaffold for the synthesis of new agents with biological interest
Katsamakas S., Papadopoulos A.G., Kouskoura M.G., Markopoulou C.K., Hadjipavlou-Litina D.
Future Medicinal Chemistry, 2019
26.
Elinson M.N., Vereshchagin A.N., Ryzhkova Y.E., Karpenko K.A., Kalashnikova V.M., Egorov M.P.
Mendeleev Communications, 2023
27.
The green chemistry paradigm in modern organic synthesis
Zlotin Sergei G., Egorova Ksenia S., Ananikov Valentine P., Akulov Alexey A., Varaksin Mikhail V., Chupakhin Oleg N., Charushin Valery N., Bryliakov Konstantin P., Averin Alexey D., Beletskaya Irina P., Dolengovski Egor L., Budnikova Yulia H., Sinyashin Oleg G., Gafurov Zufar N., Kantyukov Artyom O., et. al.
Russian Chemical Reviews, 2024