Home / Publications / Aqueous processed Li-ion battery electrodes with hydrolyzed polyacrylonitrile binder

Aqueous processed Li-ion battery electrodes with hydrolyzed polyacrylonitrile binder

Artem Andreevich Asharchuk 1
Artem Andreevich Asharchuk
Aleksei Vladimirovich Kubarkov
Alexander Victorovich Babkin 1
Alexander Victorovich Babkin
Oleg Andreevich Drozhzhin 1
Oleg Andreevich Drozhzhin
Vladimir Glebovich Sergeyev 1
Vladimir Glebovich Sergeyev
Published 2025-03-31
CommunicationVolume 35, Issue 3, 331-333
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Asharchuk A. A. et al. Aqueous processed Li-ion battery electrodes with hydrolyzed polyacrylonitrile binder // Mendeleev Communications. 2025. Vol. 35. No. 3. pp. 331-333.
GOST all authors (up to 50) Copy
Asharchuk A. A., Kubarkov A. V., Babkin A. V., Drozhzhin O. A., Sergeyev V. G. Aqueous processed Li-ion battery electrodes with hydrolyzed polyacrylonitrile binder // Mendeleev Communications. 2025. Vol. 35. No. 3. pp. 331-333.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.71267/mencom.7638
UR - https://mendcomm.colab.ws/publications/10.71267/mencom.7638
TI - Aqueous processed Li-ion battery electrodes with hydrolyzed polyacrylonitrile binder
T2 - Mendeleev Communications
AU - Asharchuk, Artem Andreevich
AU - Kubarkov, Aleksei Vladimirovich
AU - Babkin, Alexander Victorovich
AU - Drozhzhin, Oleg Andreevich
AU - Sergeyev, Vladimir Glebovich
PY - 2025
DA - 2025/03/31
PB - Mendeleev Communications
SP - 331-333
IS - 3
VL - 35
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Asharchuk,
author = {Artem Andreevich Asharchuk and Aleksei Vladimirovich Kubarkov and Alexander Victorovich Babkin and Oleg Andreevich Drozhzhin and Vladimir Glebovich Sergeyev},
title = {Aqueous processed Li-ion battery electrodes with hydrolyzed polyacrylonitrile binder},
journal = {Mendeleev Communications},
year = {2025},
volume = {35},
publisher = {Mendeleev Communications},
month = {Mar},
url = {https://mendcomm.colab.ws/publications/10.71267/mencom.7638},
number = {3},
pages = {331--333},
doi = {10.71267/mencom.7638}
}
MLA
Cite this
MLA Copy
Asharchuk, Artem Andreevich, et al. “Aqueous processed Li-ion battery electrodes with hydrolyzed polyacrylonitrile binder.” Mendeleev Communications, vol. 35, no. 3, Mar. 2025, pp. 331-333. https://mendcomm.colab.ws/publications/10.71267/mencom.7638.

Keywords

binder
carbon nanotube
dispersion
HyPAN
Li-ion battery
polyacrylonitrile

Abstract

We have developed LiFePO4-based battery electrodes using carbon nanotubes as the electrically conductive component and hydrolyzed polyacrylonitrile (HyPAN) as the polymer binder. The developed binder allows the electrodes to be manufactured environmentally friendly from a water-based slurry. Moreover, HyPAN provides a more homogeneous distribution of carbon nanotubes inside the electrode and better rate performance compared to popular binders.

Funders

Ministry of Education and Science of the Russian Federation
CITIS no. 121031300084-1

References

1.
Effect of Polymer Binders with Single-Walled Carbon Nanotubes on the Electrochemical and Physicochemical Properties of the LiFePO4Cathode
Kubarkov A.V., Asharchuk A.A., Drozhzhin O.A., Karpushkin E.A., Stevenson K.J., Antipov E.V., Sergeyev V.G.
ACS Applied Energy Materials, 2021
2.
On the Use of Carbon Nanotubes in Prototyping the High Energy Density Li‐ion Batteries
Napolskiy F., Avdeev M., Yerdauletov M., Ivankov O., Bocharova S., Ryzhenkova S., Kaparova B., Mironovich K., Burlyaev D., Krivchenko V.
Energy Technology, 2020
4.
Persistence Length of Carboxymethyl Cellulose As Evaluated from Size Exclusion Chromatography and Potentiometric Titrations
Hoogendam C.W., de Keizer A., Cohen Stuart M.A., Bijsterbosch B.H., Smit J.A., van Dijk J.A., van der Horst P.M., Batelaan J.G.
Macromolecules, 1998
7.
Toward Greener and Sustainable Li-Ion Cells: An Overview of Aqueous-Based Binder Systems
Salini P.S., Gopinadh S.V., Kalpakasseri A., John B., Thelakkattu Devassy M.
ACS Sustainable Chemistry and Engineering, 2020
8.
Gelatin and Alginate Binders for Simplified Battery Recycling
Scott S., Terreblanche J., Thompson D.L., Lei C., Hartley J.M., Abbott A.P., Ryder K.S.
Journal of Physical Chemistry C, 2022
12.
Water-based slurries for high-energy LiFePO4 batteries using embroidered current collectors
Aguiló-Aguayo N., Hubmann D., Khan F.U., Arzbacher S., Bechtold T.
Scientific Reports, 2020
13.
Polyelectrolytes and Polycomplexes for Stabilizing Sandy Grounds
Novoskoltseva O.A., Panova I.G., Loiko N.G., Nikolaev Y.A., Litmanovich E.A., Yaroslavov A.A.
Polymer Science - Series B, 2021
15.
Electrochemical Properties of LiCoO2Electrodes with Latex Binders on High-Voltage Exposure
Yabuuchi N., Kinoshita Y., Misaki K., Matsuyama T., Komaba S.
Journal of the Electrochemical Society, 2015
17.
Effects of the mixing sequence on the graphite dispersion and resistance of lithium-ion battery anodes
19.
New Perspectives in SWCNT Applications: Tuball SWCNTs. Part 2. New Composite Materials through Augmentation with Tuball.
Predtechenskiy M.R., Khasin A.A., Smirnov S.N., Bezrodny A.E., Bobrenok O.F., Dubov D.Y., Kosolapov A.G., Lyamysheva E.G., Muradyan V.E., Saik V.O., Shinkarev V.V., Chebochakov D.S., Galkov M.S., Karpunin R.V., Verkhovod T.D., et. al.
Carbon Trends, 2022
20.
Engendering High Energy Density LiFePO4 Electrodes with Morphological and Compositional Tuning
Kubarkov A.V., Babkin A.V., Drozhzhin O.A., Stevenson K.J., Antipov E.V., Sergeyev V.G.
Nanomaterials, 2023
21.
Double-walled carbon nanotubes as effective conducting agents for lithium iron phosphate cathodes
Seo S.B., Song Y., Choi Y.R., Kang M., Choi G.B., Kim J.H., Han J.H., Hong S., Muramatsu H., Kim M., Lee D., Kim Y.A.
Carbon, 2024
22.
Current Trends and Perspectives of Polymers in Batteries
Mecerreyes D., Casado N., Villaluenga I., Forsyth M.
Macromolecules, 2024
23.
Solid-state electrolytes: a way to increase the power of lithium-ion batteries
Voropaeva Daria Yu., Stenina Irina A., Yaroslavtsev Andrey B.
Russian Chemical Reviews, 2024