Ilia Romanovich Cherkashchenko
Rodion Vladislavovich Panin 2
Rodion Vladislavovich Panin
Alexander Victorovich Babkin 2
Alexander Victorovich Babkin
Daniil Andreevich Novichkov 2
Daniil Andreevich Novichkov
Evgenii Viktorovich Antipov 1, 2
Evgenii Viktorovich Antipov
Nellie Rakipovna Khasanova 2
Nellie Rakipovna Khasanova
Published 2025-05-21
CommunicationVolume 35, Issue 4, 393-395
3
Share
Cite this
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.71267/mencom.7637
UR - https://mendcomm.colab.ws/publications/10.71267/mencom.7637
T2 - Mendeleev Communications
AU - Cherkashchenko, Ilia Romanovich
AU - Panin, Rodion Vladislavovich
AU - Babkin, Alexander Victorovich
AU - Novichkov, Daniil Andreevich
AU - Antipov, Evgenii Viktorovich
AU - Khasanova, Nellie Rakipovna
PY - 2025
DA - 2025/05/21
PB - Mendeleev Communications
SP - 393-395
IS - 4
VL - 35
ER -
BibTex
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Cherkashchenko,
author = {Ilia Romanovich Cherkashchenko and Rodion Vladislavovich Panin and Alexander Victorovich Babkin and Daniil Andreevich Novichkov and Evgenii Viktorovich Antipov and Nellie Rakipovna Khasanova},
journal = {Mendeleev Communications},
year = {2025},
volume = {35},
publisher = {Mendeleev Communications},
month = {May},
url = {https://mendcomm.colab.ws/publications/10.71267/mencom.7637},
number = {4},
pages = {393--395},
doi = {10.71267/mencom.7637}
}

Keywords

NASICON-type phosphate
niobium multielectron redox reaction
sodium-ion battery
sol–gel synthesis
thermal stability

Abstract

The NASICON-structured NaAlNb(PO4)3 phosphate was synthesized via Pechini sol–gel technique. Electrochemical measurements in sodium half-cells have disclosed that NaAlNb(PO4)3 can reversibly intercalate 2Na+ ions per formula unit owing to the Nb5+/Nb4+/Nb3+ multielectron redox processes, which was confirmed by the Nb K-edge XANES measurements. Differential thermal calorimetry has revealed an excellent thermal stability of the sodiated NaAlNb(PO4)3/C electrode material up to the point of electrolyte decomposition.

Funders

Russian Science Foundation
23-13-00071

References

1.
A cost and resource analysis of sodium-ion batteries
Vaalma C., Buchholz D., Weil M., Passerini S.
Nature Reviews Materials, 2018
3.
Sodium-Ion Batteries: From Academic Research to Practical Commercialization
Deng J., Luo W., Chou S., Liu H., Dou S.
Advanced Energy Materials, 2017
5.
Conversion-Alloying Anode Materials for Sodium Ion Batteries.
Fang L., Bahlawane N., Sun W., Pan H., Xu B.B., Yan M., Jiang Y.
Small, 2021
6.
Ionic conductivity of A3 − 2x Nb x Al2 − x (PO4)3 (A = Li, Na) NASICON-type phosphates
Shaikhlislamova A.R., Goryainov A.Y., Yaroslavtsev A.B.
Inorganic Materials, 2010
7.
Lithium Insertion into NASICON Frameworks
Manickam M., Minato K., Takata M.
Journal of the Electrochemical Society, 2003
8.
Ti2Nb6O12, a Novel Niobium Oxide Cluster Compound with “Chevrel Phase” Intercluster Connectivity Type
Anokhina E.V., Essig M.W., Day C.S., Lachgar A.
Journal of the American Chemical Society, 1999
10.
Studies on the Sodium Storage Performances of Na3AlxV2–x(PO4)3@C Composites from Calculations and Experimental Analysis
Wu C., Tong J., Gao J., Li J., Li X., Zhu J., Gu M., Zhou W.
ACS Applied Energy Materials, 2021
11.
New NZP-based phosphates with low and controlled thermal expansion
Orlova A.I., Koryttzeva A.K., Lipatova Y.V., Zharinova M.V., Trubach I.G., Evseeva Y.V., Buchirina N.V., Kazantsev G.N., Samoilov S.G., Beskrovny A.I.
Journal of Materials Science, 2005
13.
Experimental and theoretical investigation of Na4MnAl(PO4)3 cathode material for sodium-ion batteries
Wang Q., Ling C., Li J., Gao H., Wang Z., Jin H.
Chemical Engineering Journal, 2021
15.
Unveiling a High Capacity Multi-redox (Nb5+/Nb4+/Nb3+) NASICON-Nb2(PO4)3 Anode for Li- and Na-ion Batteries
Patra B., Kumar K., Deb D., Ghosh S., Sai Gautam G., Senguttuvan P.
Journal of Materials Chemistry A, 2023
16.
Evidence for Nb2+and Ta3+in silicate melts under highly reducing conditions: A XANES study
Cartier C., Hammouda T., Boyet M., Mathon O., Testemale D., Moine B.N.
American Mineralogist, 2015
17.
Polyacrylonitrile-Derived Carbon Nanocoating for Long-Life High-Power Phosphate Electrodes
Nazarov E.E., Tyablikov O.A., Nikitina V.A., Antipov E.V., Fedotov S.S.
Applied Nano, 2023
18.
Prepare and optimize NASICON-type Na4MnAl(PO4)3 as low cost cathode for sodium ion batteries
19.
NaNbV(PO4)3: Multielectron NASICON-Type Anode Material for Na-Ion Batteries with Excellent Rate Capability
Khasanova N.R., Panin R.V., Cherkashchenko I.R., Zakharkin M.V., Novichkov D.A., Antipov E.V.
ACS applied materials & interfaces, 2023
20.
Hard carbon as anode material for metal-ion batteries
Abramova Elena N., Bobyleva Zoya V., Drozhzhin Oleg A., Abakumov Artem M., Antipov Evgeny V.
Russian Chemical Reviews, 2024
21.
Gryzlov D.Y., Kulova T.L., Nugmanova A.G., Skundin A.M., Kudryashova Y.O.
Mendeleev Communications, 2024
22.
Stabilizing Multi‐Electron NASICON‐Na1.5V0.5Nb1.5(PO4)3 Anode via Structural Modulation for Long‐Life Sodium‐Ion Batteries
Patra B., Hegde R., Natarajan A., Deb D., Sachdeva D., Ravishankar N., Kumar K., Gautam G.S., Senguttuvan P.
Advanced Energy Materials, 2024
23.
Realizing Three-Electron Redox Reactions in NASICON-Type NaCrNb(PO4)3 for Sodium Ion Battery Applications
Panin R.V., Cherkashchenko I.R., Zaitseva V.V., Samigullin R.R., Zakharkin M.V., Novichkov D.A., Babkin A.V., Mikheev I.V., Khasanova N.R., Antipov E.V.
Chemistry of Materials, 2024