Home / Publications / Diaryl α-nitrostilbenes as nitro-substituted analogues of combretastatins: synthesis and biological evaluation in the sea urchin embryo model

Diaryl α-nitrostilbenes as nitro-substituted analogues of combretastatins: synthesis and biological evaluation in the sea urchin embryo model

Marina N Semenova 1
Marina N Semenova
Victor Petrovich Kislyi 2
Victor Petrovich Kislyi
Anna Sergeevna Maksimenko 2
Anna Sergeevna Maksimenko
Ivan A. Koblov 2
Ivan A. Koblov
Nikita A. Kuznetsov 2
Nikita A. Kuznetsov
Karim Narimanovich Alisultanov 2
Karim Narimanovich Alisultanov
Alexander Viktorovich Samet 2
Alexander Viktorovich Samet
Victor Vladimirovich Semenov 1, 2
Victor Vladimirovich Semenov
1 N. K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russian Federation
Published 2025-03-31
CommunicationVolume 35, Issue 3, 274-277
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Semenova M. N. et al. Diaryl α-nitrostilbenes as nitro-substituted analogues of combretastatins: synthesis and biological evaluation in the sea urchin embryo model // Mendeleev Communications. 2025. Vol. 35. No. 3. pp. 274-277.
GOST all authors (up to 50) Copy
Semenova M. N., Kislyi V. P., Maksimenko A. S., Koblov I. A., Kuznetsov N. A., Alisultanov K. N., Khrustalev V. N., Samigullina A. I., Samet A. V., Semenov V. V. Diaryl α-nitrostilbenes as nitro-substituted analogues of combretastatins: synthesis and biological evaluation in the sea urchin embryo model // Mendeleev Communications. 2025. Vol. 35. No. 3. pp. 274-277.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.71267/mencom.7633
UR - https://mendcomm.colab.ws/publications/10.71267/mencom.7633
TI - Diaryl α-nitrostilbenes as nitro-substituted analogues of combretastatins: synthesis and biological evaluation in the sea urchin embryo model
T2 - Mendeleev Communications
AU - Semenova, Marina N
AU - Kislyi, Victor Petrovich
AU - Maksimenko, Anna Sergeevna
AU - Koblov, Ivan A.
AU - Kuznetsov, Nikita A.
AU - Alisultanov, Karim Narimanovich
AU - Khrustalev, Victor Nikolaevich
AU - Samigullina, Aida Ildusovna
AU - Samet, Alexander Viktorovich
AU - Semenov, Victor Vladimirovich
PY - 2025
DA - 2025/03/31
PB - Mendeleev Communications
SP - 274-277
IS - 3
VL - 35
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Semenova,
author = {Marina N Semenova and Victor Petrovich Kislyi and Anna Sergeevna Maksimenko and Ivan A. Koblov and Nikita A. Kuznetsov and Karim Narimanovich Alisultanov and Victor Nikolaevich Khrustalev and Aida Ildusovna Samigullina and Alexander Viktorovich Samet and Victor Vladimirovich Semenov},
title = {Diaryl α-nitrostilbenes as nitro-substituted analogues of combretastatins: synthesis and biological evaluation in the sea urchin embryo model},
journal = {Mendeleev Communications},
year = {2025},
volume = {35},
publisher = {Mendeleev Communications},
month = {Mar},
url = {https://mendcomm.colab.ws/publications/10.71267/mencom.7633},
number = {3},
pages = {274--277},
doi = {10.71267/mencom.7633}
}
MLA
Cite this
MLA Copy
Semenova, Marina N., et al. “Diaryl α-nitrostilbenes as nitro-substituted analogues of combretastatins: synthesis and biological evaluation in the sea urchin embryo model.” Mendeleev Communications, vol. 35, no. 3, Mar. 2025, pp. 274-277. https://mendcomm.colab.ws/publications/10.71267/mencom.7633.

Keywords

arylnitromethanes
combretastatin
Knoevenagel condensation
microtubule
sea urchin embryo
tubulin
α-nitrostilbenes

Abstract

A series of nitro analogues of potent antimitotic combretastatin A-4 (diaryl α-nitrostilbenes, DNSs) was synthesized by the Knoevenagel condensation of arylnitromethanes with methylamine Schiff bases of benzaldehydes. The obtained stilbenes featured only cis-diaryl topology irrespective of substitution pattern in the aryl fragments. The evaluation on a sea urchin embryo model suggested that DNSs exhibited both antitubulin and tubulin-unrelated effects similar to those of corresponding monoaryl nitrostyrenes.

Funders

Ministry of Education and Science of the Russian Federation
0088-2024-0015

References

1.
Photoisomerization dynamics of stilbenes
3.
Sea Urchin Embryo Model As a Reliable in Vivo Phenotypic Screen to Characterize Selective Antimitotic Molecules. Comparative evaluation of Combretapyrazoles, -isoxazoles, -1,2,3-triazoles, and -pyrroles as Tubulin-Binding Agents.
Semenova M.N., Demchuk D.V., Tsyganov D.V., Chernysheva N.B., Samet A.V., Silyanova E.A., Kislyi V.P., Maksimenko A.S., Varakutin A.E., Konyushkin L.D., Raihstat M.M., Kiselyov A.S., Semenov V.V.
ACS Combinatorial Science, 2018
4.
Regioselective synthesis of 3,4-diaryl-5-unsubstituted isoxazoles, analogues of natural cytostatic combretastatin A4.
Chernysheva N.B., Maksimenko A.S., Andreyanov F.A., Kislyi V.P., Strelenko Y.A., Khrustalev V.N., Semenova M.N., Semenov V.V.
European Journal of Medicinal Chemistry, 2018
5.
Synthesis of 3,4-diarylpyrroles and conversion into dodecaarylporphyrins; a new approach to porphyrins with altered redox potentials
Ono N., Miyagawa H., Ueta T., Ogawa T., Tani H.
Journal of the Chemical Society Perkin Transactions 1, 1998
7.
Novel Combretastatin Analogues Effective against Murine Solid Tumors:  Design and Structure−Activity Relationships
Ohsumi K., Nakagawa R., Fukuda Y., Hatanaka T., Morinaga Y., Nihei Y., Ohishi K., Suga Y., Akiyama Y., Tsuji T.
Journal of Medicinal Chemistry, 1998
9.
Synthesis of Unsymmetrical 3,4-Diaryl-3-pyrrolin-2-ones Utilizing Pyrrole Weinreb Amides
Greger J.G., Yoon-Miller S.J., Bechtold N.R., Flewelling S.A., MacDonald J.P., Downey C.R., Cohen E.A., Pelkey E.T.
Journal of Organic Chemistry, 2011
10.
S-Michael Additions to Chiral Dehydroalanines as an Entry to Glycosylated Cysteines and a Sulfa-Tn Antigen Mimic
Aydillo C., Compañón I., Avenoza A., Busto J.H., Corzana F., Peregrina J.M., Zurbano M.M.
Journal of the American Chemical Society, 2014
12.
Synthesis and antiproliferative properties of 3,4-diarylpyrrole-2-carboxamides
Silyanova E.A., Samet A.V., Semenova M.N., Semenov V.V.
Russian Chemical Bulletin, 2021
13.
Highly double selective nitration of nitrostilbenes over zeolite
Xu J., Wei J., Hao Z., Ma Q., Peng X.
Chemical Communications, 2014
14.
Synthesis and evaluation of a series of resveratrol analogues as potent anti-cancer agents that target tubulin
Madadi N.R., Zong H., Ketkar A., Zheng C., Penthala N.R., Janganati V., Bommagani S., Eoff R.L., Guzman M.L., Crooks P.A.
MedChemComm, 2015
15.
The Catalytic Reduction of α-Nitrostilbenes to α, β-Diphenylethylamines
McPhee W.D., Erickson E.S., Salvador U.J.
Journal of the American Chemical Society, 1946
17.
Phenylnitromethane. I. An Improved Synthesis of α-Nitrostilbenes
18.
Preparation of Ring-Methoxylated Arylnitromethanes by the Victor Meyer Reaction
Kislyi V.P., Maksimenko A.S., Buikin P.A., Daeva E.D., Semenov V.V.
Synthesis, 2022
19.
Antifungal and cancer cell growth inhibitory activities of 1-(3',4',5'-trimethoxyphenyl)-2-nitro-ethylene
Pettit R.K., Hamel E., Verdier-Pinard P., Roberson R.W., Hazen K.C., Pettit G.R., Crews L.C.
Mycoses, 2002
20.
Zur Kenntnis des Tetranitro‐methans, V. Mitteilung: Tetranitro‐methan als Nitrierungsmittel (II)
Schmidt E., Schumacher R., Bäjen W., Wagner A.
Berichte der deutschen chemischen Gesellschaft (A and B Series), 1922
22.
Synthesis of 3,4-diaryl-5-carboxy-4,5-dihydroisoxazole 2-oxides as valuable synthons for anticancer molecules
Chernysheva N.B., Maksimenko A.S., Andreyanov F.A., Kislyi V.P., Strelenko Y.A., Khrustalev V.N., Semenova M.N., Semenov V.V.
Tetrahedron, 2017
23.
Simple and efficient one-pot solvent-free synthesis of N-methyl imines of aromatic aldehydes
Radulović N.S., Miltojević A.B., Vukićević R.D.
Comptes Rendus Chimie, 2013
24.
In vitro and in vivo biological evaluation of new 4,5-disubstituted 1,2,3-triazoles as cis-constrained analogs of combretastatin A4
Mur Blanch N., Chabot G.G., Quentin L., Scherman D., Bourg S., Dauzonne D.
European Journal of Medicinal Chemistry, 2012
25.
Novel cyanocombretastatins as potent tubulin polymerisation inhibitors
Jalily P.H., Hadfield J.A., Hirst N., Rossington S.B.
Bioorganic and Medicinal Chemistry Letters, 2012
26.
Acetyl analogs of combretastatin A-4: Synthesis and biological studies
Babu B., Lee M., Lee L., Strobel R., Brockway O., Nickols A., Sjoholm R., Tzou S., Chavda S., Desta D., Fraley G., Siegfried A., Pennington W., Hartley R.M., Westbrook C., et. al.
Bioorganic and Medicinal Chemistry, 2011
27.
Access to 2,3-diaryl-4-nitrothiochroman S,S-dioxides from 3-nitrobenzo[b]thiophene
Bianchi L., Maccagno M., Petrillo G., Rizzato E., Sancassan F., Spinelli D., Tavani C.
Tetrahedron, 2011
28.
Rusanov D.A., Myshlyavtsev A.B., Silyanova E.A., Samet A.V., Semenov V.V.
Mendeleev Communications, 2020
30.
Development of a practical synthesis of novel, pyrrole-based HMG-CoA reductase inhibitors
Pfefferkorn J.A., Bowles D.M., Kissel W., Boyles D.C., Choi C., Larsen S.D., Song Y., Sun K., Miller S.R., Trivedi B.K.
Tetrahedron, 2007
31.
Silyanova E.A., Ushkarov V.I., Samet A.V., Maksimenko A.S., Koblov I.A., Kislyi V.P., Semenova M.N., Semenov V.V.
Mendeleev Communications, 2022
32.
Maksimenko A.S., Koblov I.A., Chernysheva N.B., Kislyi V.P., Semenov V.V.
Mendeleev Communications, 2021
34.
Toward “E‐ring‐free” lamellarin analogues: synthesis and preliminary biological evaluation
Rusanov D.A., Alfadul S.M., Portnyagina E.Y., Silyanova E.A., Kuznetsov N.A., Podpovetny K.E., Samet A.V., Semenov V.V., Babak M.
ChemBioChem, 2023
36.
Kislyi V.P., Maksimenko A.S., Samigullina A.I., Semenova M.N., Semenov V.V.
Mendeleev Communications, 2024