Keywords
in situ regeneration of catalyst
cresols
nitrous oxide
oxidation
supercritical conditions
toluene
ZSM-5 zeolite
Abstract
The direct oxidation of toluene to cresols with nitrous oxide as the oxidant was carried out over a ZSM-5 zeolite catalyst under gaseous and supercritical conditions (395 °C and 0.5, 7, 12 MPa; 420 °C and 15 MPa). The supercritical oxidation is characterized by a significantly greater productivity as compared to the gas-phase process. Successful in situ regeneration of the deactivated catalyst during the transition from the gas-phase to the supercritical process has been demonstrated.
Funders
Ministry of Education and Science of the Russian Federation
References
1.
Alekseev E.S., Alentiev A.Y., Belova A.S., Bogdan V.I., Bogdan T.V., Bystrova A.V., Gafarova E.R., Golubeva E.N., Grebenik E.A., Gromov O.I., Davankov V.A., Zlotin S.G., Kiselev M.G., Koklin A.E., Kononevich Y.N., et. al.
Russian Chemical Reviews,
2020
2.
Parrott A.J., Bourne R.A., Akien G.R., Irvine D.J., Poliakoff M.
Angewandte Chemie - International Edition,
2011
3.
Koklin A.E., Hasyanova G.M., Glukhov L.M., Bogdan V.I.
Russian Chemical Bulletin,
2017
4.
Kustov A.L., Kalenchuk A.N., Lunin V.V., Koklin A.E., Bogdan V.I.
Russian Journal of Physical Chemistry B,
2016
5.
Lovley D.R., Lonergan D.J.
Applied and Environmental Microbiology,
1990
6.
Raba A., Cokoja M., Herrmann W.A., Kühn F.E.
Chemical Communications,
2014
7.
Frankcombe T.J.
Journal of Physical Chemistry A,
2008
8.
Salta Z., Kosmas A.M., Segovia M.E., Kieninger M., Tasinato N., Barone V., Ventura O.N.
Journal of Physical Chemistry A,
2020
9.
Shoukat H., Altaf A.A., Hamayun M., Ullah S., Kausar S., Hamza M., Muhammad S., Badshah A., Rasool N., Imran M.
ACS Omega,
2021
10.
Veshchitsky G.A., Smirnov A.V., Mashchenko N.V., Koklin A.E., Bogdan V.I.
Russian Journal of Physical Chemistry B,
2021
11.
Vardar G., Wood T.K.
Applied and Environmental Microbiology,
2004
12.
Vogel B., Schneider C., Klemm E.
Catalysis Letters,
2002
13.
Panov G.I.
CATTECH,
2000
14.
Burch R., Howitt C.
Applied Catalysis A: General,
1993
15.
Motz J.L., Heinichen H., Hölderich W.F.
Journal of Molecular Catalysis A Chemical,
1998
16.
Zholobenko V.
Mendeleev Communications,
1993
17.
Ivanov D.P., Sobolev V.I., Panov G.I.
Applied Catalysis A: General,
2003
18.
Koekkoek A.J., Kim W., Degirmenci V., Xin H., Ryoo R., Hensen E.J.
Journal of Catalysis,
2013
19.
Taraborrelli D., Cabrera-Perez D., Bacer S., Gromov S., Lelieveld J., Sander R., Pozzer A.
Atmospheric Chemistry and Physics,
2021
20.
Otsuka K., Ishizuka K., Yamanaka I.
Electrochimica Acta,
1992
21.
Kharitonov A.S., Sobolev V.I., Panov G.I.
Russian Chemical Reviews,
1992
22.
Zhao B., Ji Y., Qin D., Ji Y., Chen J., An T.
Journal of Environmental Sciences,
2022
23.
Song Z., Li H., Zhang X., Zhang Z., Mao Y., Liu W., Liu Z., Mo D., Zhu X., Huang Z.
Chemical Physics Impact,
2022
24.
Huang Z., Li H., Zhang X., Mao Y., Wu Y., Liu W., Gao H., Zhang M., Song Z.
Journal of Environmental Sciences,
2024
25.
Fu Z., Ma F., Liu Y., Yan C., Huang D., Chen J., Elm J., Li Y., Ding A., Pichelstorfer L., Xie H., Nie W., Francisco J.S., Zhou P.
Chemical Science,
2023
26.
Savarets A.R., Bogdan T.V., Koklin A.E., Mashchenko N.V., Bogdan V.I.
Russian Journal of Physical Chemistry B,
2023
27.
Bogdan T.V., Koklin A.E., Mashchenko N.V., Bogdan V.I.
Mendeleev Communications,
2024
28.
Lapa H.M., Martins L.M.
ACS Omega,
2024
29.
Bogdan T.V., Koklin A.E., Mishanin I.I., Chernavsky P.A., Pankratov D.A., Kim O.A., Bogdan V.
ChemPlusChem,
2024
30.
Lee K., Cho Y., Kim J.C., Choi C., Kim J., Lee J.K., Li S., Kwak S.K., Choi S.Q.
Nature Communications,
2024
31.
Bogdan V.I., Zholobenko V.L., Bogdan T.V., Kustov A.L., Koklin A.E., Mishanin I.I., Mashchenko N.V., Bogorodskiy S.E.
Journal of Supercritical Fluids,
2024
32.
Bogdan T.V., Savarets A.R., Mashchenko N.V., Koklin A.E., Tkachenko O.P., Bogdan V.I.
Russian Chemical Bulletin,
2024