Home / Publications / Organization of cellulose fibrils in the capsular matrix of Acidisarcina polymorpha SBC82T identified by synchrotron radiation

Organization of cellulose fibrils in the capsular matrix of Acidisarcina polymorpha SBC82T identified by synchrotron radiation

Vladislav V Kovalenko 1
Vladislav V Kovalenko
Svetlana Eduardovna Belova 2
Svetlana Eduardovna Belova
Ksenia Borisovna Tereshkina 1
Ksenia Borisovna Tereshkina
Eduard Vladimirovich Tereshkin 1
Eduard Vladimirovich Tereshkin
Yurii Fedorovich Krupyanskii 1
Yurii Fedorovich Krupyanskii
Nataliya G Loiko 2
Nataliya G Loiko
1 N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation
2 Federal Research Center ‘Fundamentals of Biotechnology’ of the Russian Academy of Sciences, 119071 Moscow, Russian Federation
Published 2025-03-31
CommunicationVolume 35, Issue 3, 292-294
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Kovalenko V. V. et al. Organization of cellulose fibrils in the capsular matrix of Acidisarcina polymorpha SBC82T identified by synchrotron radiation // Mendeleev Communications. 2025. Vol. 35. No. 3. pp. 292-294.
GOST all authors (up to 50) Copy
Kovalenko V. V., Belova S. E., Tereshkina K. B., Tereshkin E. V., Krupyanskii Y. F., Loiko N. G. Organization of cellulose fibrils in the capsular matrix of Acidisarcina polymorpha SBC82T identified by synchrotron radiation // Mendeleev Communications. 2025. Vol. 35. No. 3. pp. 292-294.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.71267/mencom.7604
UR - https://mendcomm.colab.ws/publications/10.71267/mencom.7604
TI - Organization of cellulose fibrils in the capsular matrix of Acidisarcina polymorpha SBC82T identified by synchrotron radiation
T2 - Mendeleev Communications
AU - Kovalenko, Vladislav V
AU - Belova, Svetlana Eduardovna
AU - Tereshkina, Ksenia Borisovna
AU - Tereshkin, Eduard Vladimirovich
AU - Krupyanskii, Yurii Fedorovich
AU - Loiko, Nataliya G
PY - 2025
DA - 2025/03/31
PB - Mendeleev Communications
SP - 292-294
IS - 3
VL - 35
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Kovalenko,
author = {Vladislav V Kovalenko and Svetlana Eduardovna Belova and Ksenia Borisovna Tereshkina and Eduard Vladimirovich Tereshkin and Yurii Fedorovich Krupyanskii and Nataliya G Loiko},
title = {Organization of cellulose fibrils in the capsular matrix of Acidisarcina polymorpha SBC82T identified by synchrotron radiation},
journal = {Mendeleev Communications},
year = {2025},
volume = {35},
publisher = {Mendeleev Communications},
month = {Mar},
url = {https://mendcomm.colab.ws/publications/10.71267/mencom.7604},
number = {3},
pages = {292--294},
doi = {10.71267/mencom.7604}
}
MLA
Cite this
MLA Copy
Kovalenko, Vladislav V., et al. “Organization of cellulose fibrils in the capsular matrix of Acidisarcina polymorpha SBC82T identified by synchrotron radiation.” Mendeleev Communications, vol. 35, no. 3, Mar. 2025, pp. 292-294. https://mendcomm.colab.ws/publications/10.71267/mencom.7604.

Keywords

Acidisarcina polymorpha
cellulose fibrils.
chain molecules
SAXS
small-angle X-ray scattering
WAXS
wide-angle X-ray scattering
X-ray diffraction

Abstract

A structural study of the cellulose-containing capsular matrix of Acidisarcina polymorpha SBC82T was carried out using synchrotron radiation. Analysis of the diffraction pattern from a 45-day-old population of acidobacteria revealed that the crystalline structure of the capsular matrix, formed by cellulose fibrils with cylindrical symmetry, is well described by a two-dimensional hexagonal lattice. Processing of diffraction data allowed us to calculate the radius of fibrils in the main (17.0 ± 0.5 A) and additional (10 ± 5.9 A) directions and their mass ratio (9 : 1), as well as to estimate the size of the crystalline domain of the capsules (50 nm).

Funders

Ministry of Education and Science of the Russian Federation
1024040100181-4

References

.
Hydrolytic Capabilities as a Key to Environmental Success: Chitinolytic and Cellulolytic Acidobacteria From Acidic Sub-arctic Soils and Boreal Peatlands
Belova S.E., Ravin N.V., Pankratov T.A., Rakitin A.L., Ivanova A.A., Beletsky A.V., Mardanov A.V., Sinninghe Damsté J.S., Dedysh S.N.
Frontiers in Microbiology, 2018
.
Cellulose‐Builder: A toolkit for building crystalline structures of cellulose
Gomes T.C., Skaf M.S.
Journal of Computational Chemistry, 2012
.
Collagen Fibril Orientation in Ovine and Bovine Leather Affects Strength: A Small Angle X-ray Scattering (SAXS) Study
Basil-Jones M.M., Edmonds R.L., Cooper S.M., Haverkamp R.G.
Journal of Agricultural and Food Chemistry, 2011
.
Building a Cell House from Cellulose: The Case of the Soil Acidobacterium Acidisarcina polymorpha SBC82T
Belova S.E., Naumoff D.G., Suzina N.E., Kovalenko V.V., Loiko N.G., Sorokin V.V., Dedysh S.N.
Microorganisms, 2022
.
Spiral angle of elementary cellulose fibrils in cell walls ofPicea abies determined by small-angle x-ray scattering
Reiterer A., Jakob H.F., Stanzl-Tschegg S.E., Fratzl P.
Wood Science and Technology, 1998
.
Scanning X-Ray Nanodiffraction on Dictyostelium discoideum
Priebe M., Bernhardt M., Blum C., Tarantola M., Bodenschatz E., Salditt T.
Biophysical Journal, 2014
.
Structural Modeling Using Solution Small-Angle X-ray Scattering (SAXS)
Gräwert T.W., Svergun D.I.
Journal of Molecular Biology, 2020
.
Blends of styrene butadiene styrene TRI block copolymer/polyaniline-Characterization by WAXS
Souza F.G., Soares B.G., Mantovani G.L., Manjunath A., Somashekarappa H., Somashekar R., Siddaramaiah
Polymer, 2006
.
Physico-mechanical and WAXS studies of PU/PS semi interpenetrating polymer networks
Kumar H., Siddaramaiah, Somashekar R., Mahesh S.S.
European Polymer Journal, 2007
.
Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering (SAXS)
Moger C.J., Barrett R., Bleuet P., Bradley D.A., Ellis R.E., Green E.M., Knapp K.M., Muthuvelu P., Winlove C.P.
Osteoarthritis and Cartilage, 2007
.
Structural analysis of flexible proteins in solution by small angle X-ray scattering combined with crystallography
Tsutakawa S.E., Hura G.L., Frankel K.A., Cooper P.K., Tainer J.A.
Journal of Structural Biology, 2007
.
Visualizing functional dynamicity in the DNA-dependent protein kinase holoenzyme DNA-PK complex by integrating SAXS with cryo-EM
Hammel M., Rosenberg D.J., Bierma J., Hura G.L., Thapar R., Lees-Miller S.P., Tainer J.A.
Progress in Biophysics and Molecular Biology, 2021
.
Variation of Cellulose Microfibril Angles in Softwoods and Hardwoods—A Possible Strategy of Mechanical Optimization
Lichtenegger H., Reiterer A., Stanzl-Tschegg S.E., Fratzl P.
Journal of Structural Biology, 1999
.
Synchrotron 3D SAXS analysis of bone nanostructure
Seidel R., Gourrier A., Kerschnitzki M., Burghammer M., Fratzl P., Gupta H.S., Wagermaier W.
Bioinspired, Biomimetic and Nanobiomaterials, 2012
.
Nanoporous carbon materials: modern production methods and applications
Pavlenko Vladimir V., Zakharov Aleksandr Yu., Ayaganov Zhanibek E., Mansurov Zulkhair A.
Russian Chemical Reviews, 2024