Keywords
action spectrum
benzene
Bi2WO6
composite
cyclohexane
oxidation
TiO2
Abstract
The dependence of the photonic efficiency on the wavelength, i.e. the action spectrum, was established for the test reactions of benzene and cyclohexane oxidation over the Bi2WO6/TiO2-N composites and individual components. It was found that the action spectrum curve for cyclohexane oxidation reproduces the light absorption curve, while that for benzene oxidation indicates some additional activity in the range of 400--550 nm. It was concluded that the intermediate products of benzene oxidation on the catalyst surface exert a photosensitization effect, which significantly increases the photoactivity of Bi2WO6/TiO2-N composites in the visible range.
Funders
Russian Science Foundation
23-23-00505
References
1.
FUJISHIMA A., ZHANG X., TRYK D.
Surface Science Reports,
2008
2.
Braslavsky S.E., Braun A.M., Cassano A.E., Emeline A.V., Litter M.I., Palmisano L., Parmon V.N., Serpone N.
Pure and Applied Chemistry,
2011
3.
Lyulyukin M.N., Kolinko P.A., Selishchev D.S., Kozlov D.V.
Applied Catalysis B: Environmental,
2018
4.
Einaga H.
Applied Catalysis B: Environmental,
2002
5.
Selishchev D.S., Filippov T.N., Lyulyukin M.N., Kozlov D.V.
Chemical Engineering Journal,
2019
6.
Pham T., Lee B., Lee C.
Applied Catalysis B: Environmental,
2016
7.
Lyulyukin M., Filippov T., Cherepanova S., Solovyeva M., Prosvirin I., Bukhtiyarov A., Kozlov D., Selishchev D.
Nanomaterials,
2021
8.
David E., Niculescu V.
International Journal of Environmental Research and Public Health,
2021
9.
Kovalevskiy N., Cherepanova S., Gerasimov E., Lyulyukin M., Solovyeva M., Prosvirin I., Kozlov D., Selishchev D.
Nanomaterials,
2022
10.
Abe R., Takami H., Murakami N., Ohtani B.
Journal of the American Chemical Society,
2008
11.
Xie K., Xu D., Li C., Liu X., Hu X., Ma Z., Tang X., Chen Y.
Industrial & Engineering Chemistry Research,
2019
12.
Shtareva A.V., Shtarev D.S., Balanov M.I., Krutikova V.O., Astapov I.A.
Russian Journal of Inorganic Chemistry,
2022
13.
Torimoto T., Nakamura N., Ikeda S., Ohtani B.
Physical Chemistry Chemical Physics,
2002
14.
Higashimoto S., Okada K., Azuma M., Ohue H., Terai T., Sakata Y.
RSC Advances,
2012
15.
Tobaldi D.M., Seabra M.P., Otero-Irurueta G., de Miguel Y.R., Ball R.J., Singh M.K., Pullar R.C., Labrincha J.A.
RSC Advances,
2015
16.
Watanabe T., Takizawa T., Honda K.
The Journal of Physical Chemistry,
1977
17.
Einaga H., Futamura S., Ibusuki T.
Physical Chemistry Chemical Physics,
1999
18.
Zhang Y., Wang Y., Xie R., Huang H., Leung M.K., Li J., Leung D.Y.
Environmental Science & Technology,
2022
19.
Kovalevskiy N., Svintsitskiy D., Cherepanova S., Yakushkin S., Martyanov O., Selishcheva S., Gribov E., Kozlov D., Selishchev D.
Nanomaterials,
2022
20.
Kozlov D.V.
Theoretical and Experimental Chemistry,
2014
21.
Lyulyukin M., Kovalevskiy N., Selishchev D., Kozlov D.
Journal of Photochemistry and Photobiology A: Chemistry,
2021
22.
Kovalevskiy N.S., Lyulyukin M.N., Kozlov D.V., Selishchev D.S.
Mendeleev Communications,
2021
23.
Quesada-Cabrera R., Mills A., O’Rourke C.
Applied Catalysis B: Environmental,
2014
24.
Spasiano D., Marotta R., Malato S., Fernandez-Ibañez P., Di Somma I.
Applied Catalysis B: Environmental,
2015
25.
Kerkez-Kuyumcu Ö., Kibar E., Dayıoğlu K., Gedik F., Akın A.N., Özkara-Aydınoğlu Ş.
Journal of Photochemistry and Photobiology A: Chemistry,
2015
26.
Bagwasi S., Niu Y., Nasir M., Tian B., Zhang J.
Applied Surface Science,
2013
27.
Higashimoto S., Suetsugu N., Azuma M., Ohue H., Sakata Y.
Journal of Catalysis,
2010
28.
Yang H.
Materials Research Bulletin,
2021
29.
Wang Z., Lin Z., Shen S., Zhong W., Cao S.
Chinese Journal of Catalysis,
2021
30.
Almaie S., Vatanpour V., Rasoulifard M.H., Koyuncu I.
Chemosphere,
2022
31.
Zhao Y., Linghu X., Shu Y., Zhang J., Chen Z., Wu Y., Shan D., Wang B.
Journal of Environmental Chemical Engineering,
2022
32.
Dong S., Chen S., He F., Li J., Li H., Xu K.
Journal of Alloys and Compounds,
2022
33.
Lyulyukin M.N., Kovalevskiy N.S., Fedorova E.A., Selishchev D.S., Kozlov D.V.
Mendeleev Communications,
2022
34.
Paschke A., Selishchev D., Lyulyukin M., Kozlov D.
Molecular Catalysis,
2022
35.
Masresha G., Jabasingh S.A., Kebede S., Doo‐Arhin D., Assefa M.
Canadian Journal of Chemical Engineering,
2023
36.
Lyulyukin M.N., Kovalevskiy N.S., Prosvirin I.P., Selishchev D.S., Kozlov D.V.
Mendeleev Communications,
2023
37.
Farooque Lanjwani M., Tuzen M., Yar Khuhawar M., Saleh T.A.
Inorganic Chemistry Communication,
2024
38.
Surana M., Pattanayak D.S., Yadav V., Singh V.K., Pal D.
Environmental Research,
2024
39.
Huang F., Zhang X., Chang Y., Chen W., Wu H., Li L., Jia J.
Molecular Catalysis,
2024
40.
Borjigin B., Ding L., Liu C., Li H., Wang X.
Chemical Engineering Journal,
2024
41.
Lyulyukin M.N., Morozova M.E., Polskikh D.A., Prosvirin I.P., Cherepanova S.V., Selishchev D.S., Kozlov D.V.
Journal of Structural Chemistry,
2024
42.
Korolenko M.V., Fabritchnyi P.B., Teterin Y.A., Maslakov K.I., Afanasov M.I.
Mendeleev Communications,
2024