Home / Publications / Two-dimensional C6B4 and C8B4 monolayers: a new family of non-classical systems with planar tetracoordinate carbon atoms and highly anisotropic mechanical properties

Two-dimensional C6B4 and C8B4 monolayers: a new family of non-classical systems with planar tetracoordinate carbon atoms and highly anisotropic mechanical properties

Stanislav Alexandrovich Zaitsev 1
Stanislav Alexandrovich Zaitsev
Iliya Vladimirovich Getmanskii 1
Iliya Vladimirovich Getmanskii
Tatyana N Gribanova 1
Tatyana N Gribanova
Ruslan Mikhailovich Minyaev 1
Ruslan Mikhailovich Minyaev
Published 2025-02-18
Focus articleVolume 35, Issue 2, 123-127
1
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Zaitsev S. A. et al. Two-dimensional C6B4 and C8B4 monolayers: a new family of non-classical systems with planar tetracoordinate carbon atoms and highly anisotropic mechanical properties // Mendeleev Communications. 2025. Vol. 35. No. 2. pp. 123-127.
GOST all authors (up to 50) Copy
Zaitsev S. A., Getmanskii I. V., Gribanova T. N., Minyaev R. M. Two-dimensional C6B4 and C8B4 monolayers: a new family of non-classical systems with planar tetracoordinate carbon atoms and highly anisotropic mechanical properties // Mendeleev Communications. 2025. Vol. 35. No. 2. pp. 123-127.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.71267/mencom.7595
UR - https://mendcomm.colab.ws/publications/10.71267/mencom.7595
TI - Two-dimensional C6B4 and C8B4 monolayers: a new family of non-classical systems with planar tetracoordinate carbon atoms and highly anisotropic mechanical properties
T2 - Mendeleev Communications
AU - Zaitsev, Stanislav Alexandrovich
AU - Getmanskii, Iliya Vladimirovich
AU - Gribanova, Tatyana N
AU - Minyaev, Ruslan Mikhailovich
PY - 2025
DA - 2025/02/18
PB - Mendeleev Communications
SP - 123-127
IS - 2
VL - 35
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Zaitsev,
author = {Stanislav Alexandrovich Zaitsev and Iliya Vladimirovich Getmanskii and Tatyana N Gribanova and Ruslan Mikhailovich Minyaev},
title = {Two-dimensional C6B4 and C8B4 monolayers: a new family of non-classical systems with planar tetracoordinate carbon atoms and highly anisotropic mechanical properties},
journal = {Mendeleev Communications},
year = {2025},
volume = {35},
publisher = {Mendeleev Communications},
month = {Feb},
url = {https://mendcomm.colab.ws/publications/10.71267/mencom.7595},
number = {2},
pages = {123--127},
doi = {10.71267/mencom.7595}
}
MLA
Cite this
MLA Copy
Zaitsev, Stanislav Alexandrovich, et al. “Two-dimensional C6B4 and C8B4 monolayers: a new family of non-classical systems with planar tetracoordinate carbon atoms and highly anisotropic mechanical properties.” Mendeleev Communications, vol. 35, no. 2, Feb. 2025, pp. 123-127. https://mendcomm.colab.ws/publications/10.71267/mencom.7595.
Views / Downloads
2 / 1

Keywords

2D monolayer
anisotropic auxetic material
C6B4 monolayer
C8B4 monolayer
in-plane anisotropy
mechanical anisotropy coefficient
non-classical carbon
non-classical structural block
planar tetracoordinate carbon
Poisson’s ratio

Abstract

Crystalline forms of two-dimensional C6B4 and C8B4 monolayers designed on the basis of diboraspiropentadiene C3B2H4 structural blocks with planar tetracoordinate carbon atoms were studied using DFT calculations. The calculations predict the structural and dynamic stability of isomeric forms of C6B4 and C8B4 monolayers, which exhibit pronounced in-plane anisotropy of mechanical properties with high values of the mechanical anisotropy coefficient (up to 6.6) and maximum values of the Poisson’s ratio (up to 1.5). Isomers containing a continuous six-membered carbon ring within the structural block have negative Poisson’s ratios for some directions and can be characterized as anisotropic auxetics.

Funders

Russian Science Foundation
23-23-00338

References

.
Four Decades of the Chemistry of Planar Hypercoordinate Compounds
Yang L., Ganz E., Chen Z., Wang Z., Schleyer P.V.
Angewandte Chemie - International Edition, 2015
.
Stretching and Breaking of Ultrathin MoS2
Bertolazzi S., Brivio J., Kis A.
ACS Nano, 2011
.
Two-Dimensional Tetragonal TiC Monolayer Sheet and Nanoribbons
Zhang Z., Liu X., Yakobson B.I., Guo W.
Journal of the American Chemical Society, 2012
.
Planar tetracoordinate carbon
Hoffmann R., Alder R.W., Wilcox C.F.
Journal of the American Chemical Society, 1970
.
Metallic and Magnetic 2D Materials Containing Planar Tetracoordinated C and N
Jimenez-Izal E., Saeys M., Alexandrova A.N.
Journal of Physical Chemistry C, 2016
.
Stability, electronic, and optical properties of two‐dimensional phosphoborane
Steglenko D.V., Tkachenko N.V., Boldyrev A.I., Minyaev R.M., Minkin V.I.
Journal of Computational Chemistry, 2020
.
Origin of extraordinary stability of square-planar carbon atoms in surface carbides of cobalt and nickel.
Nandula A., Trinh Q.T., Saeys M., Alexandrova A.N.
Angewandte Chemie - International Edition, 2015
.
Electrically tunable band gap in silicene
Drummond N.D., Zólyomi V., Fal'ko V.I.
Physical Review B, 2012
.
Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene
Dávila M.E., Xian L., Cahangirov S., Rubio A., Le Lay G.
New Journal of Physics, 2014
.
Planar Tetracoordinate Carbon in Extended Systems
Pancharatna P.D., Méndez-Rojas M.A., Merino G., Vela A., Hoffmann R.
Journal of the American Chemical Society, 2004
.
Planar and Pyramidal Tetracoordinate Carbon in Organoboron Compounds
Minyaev R.M., Gribanova T.N., Minkin V.I., Starikov A.G., Hoffmann R.
Journal of Organic Chemistry, 2005
.
Zigzag Boron−Carbon Nanotubes with Quasi-planar Tetracoordinate Carbons
Zhang C., Sun W., Cao Z.
Journal of the American Chemical Society, 2008
.
B2C Graphene, Nanotubes, and Nanoribbons
Wu X., Pei Y., Zeng X.C.
Nano Letters, 2009
.
Band Gap Engineering and 14 Electron Superatoms in 2D Superoctahedral Boranes B4X2 (B, N, P, As, Sb)
Fedik N., Steglenko D.V., Muñoz-Castro A., Minyaev R.M., Minkin V.I.
Journal of Physical Chemistry C, 2021
.
Two-dimensional lattice oligomers of diboraspiropentadiene: a quantum chemical study
Minkin V.I., Avakyan V.E., Minyaev R.M.
Russian Chemical Bulletin, 2011
.
Computer Design of Two-Dimensional Monolayers with Octahedral 1,6-Carborane Units
Steglenko D.V., Zaitsev S.A., Minyaev R.M., Minkin V.I.
Russian Journal of Inorganic Chemistry, 2019
.
Nonclassical carbon: From theory to experiment
Minyaev R.M., Minkin V.I.
Russian Journal of General Chemistry, 2008
.
Planar Four-Coordinate Carbon in Star-Like Perlithioannulenes C n Li n (n = 3–6)
Minkin V.I., Minyaev R.M., Starikov A.G., Gribanova T.N.
Russian Journal of Organic Chemistry, 2005
.
Al2C monolayer: the planar tetracoordinate carbon global minimum
Li Y., Liao Y., Schleyer P.V., Chen Z.
Nanoscale, 2014
.
A new, general strategy for achieving planar tetracoordinate geometries for carbon and other second row periodic elements
von Ragué Schleyer P., Boldyrev A.I.
Journal of the Chemical Society Chemical Communications, 1991
.
Extended organoboron structures containing several planar tetracoordinate carbon atoms
Minyaev R.M., Avakyan V.E., Starikov A.G., Gribanova T.N., Minkin V.I.
Doklady Chemistry, 2008
.
Gribanova T.N., Minyaev R.M., Minkin V.I.
Collection of Czechoslovak Chemical Communications, 2002
.
Theoretical study on a family of organic molecules with planar tetracoordinate carbon
Zhang C., Wang P., Liang J., Jia W., Cao Z.
Journal of Molecular Structure THEOCHEM, 2010
.
Mechanical properties of single-layer black phosphorus
Jiang J., Park H.S.
Journal Physics D: Applied Physics, 2014
.
Functionalizing graphene by embedded boron clusters
Quandt A., Özdoğan C., Kunstmann J., Fehske H.
Nanotechnology, 2008