Home / Publications / General AMBER force field parameters for modeling polyalkylsiloxane chains

General AMBER force field parameters for modeling polyalkylsiloxane chains

Gennady Ivanovich Makarov 1
Gennady Ivanovich Makarov
Tatiana Mikhaylovna Makarova 1
Tatiana Mikhaylovna Makarova
1 South Ural State University (National Research University), 454080 Chelyabinsk, Russian Federation
Published 2025-02-18
CommunicationVolume 35, Issue 2, 221-223
1
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Makarov G. I., Makarova T. M. General AMBER force field parameters for modeling polyalkylsiloxane chains // Mendeleev Communications. 2025. Vol. 35. No. 2. pp. 221-223.
GOST all authors (up to 50) Copy
Makarov G. I., Makarova T. M. General AMBER force field parameters for modeling polyalkylsiloxane chains // Mendeleev Communications. 2025. Vol. 35. No. 2. pp. 221-223.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.71267/mencom.7580
UR - https://mendcomm.colab.ws/publications/10.71267/mencom.7580
TI - General AMBER force field parameters for modeling polyalkylsiloxane chains
T2 - Mendeleev Communications
AU - Makarov, Gennady Ivanovich
AU - Makarova, Tatiana Mikhaylovna
PY - 2025
DA - 2025/02/18
PB - Mendeleev Communications
SP - 221-223
IS - 2
VL - 35
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Makarov,
author = {Gennady Ivanovich Makarov and Tatiana Mikhaylovna Makarova},
title = {General AMBER force field parameters for modeling polyalkylsiloxane chains},
journal = {Mendeleev Communications},
year = {2025},
volume = {35},
publisher = {Mendeleev Communications},
month = {Feb},
url = {https://mendcomm.colab.ws/publications/10.71267/mencom.7580},
number = {2},
pages = {221--223},
doi = {10.71267/mencom.7580}
}
MLA
Cite this
MLA Copy
Makarov, Gennady Ivanovich, and Tatiana Mikhaylovna Makarova. “General AMBER force field parameters for modeling polyalkylsiloxane chains.” Mendeleev Communications, vol. 35, no. 2, Feb. 2025, pp. 221-223. https://mendcomm.colab.ws/publications/10.71267/mencom.7580.

Keywords

force field
GAFF
molecular mechanics
polydimethylsiloxane
siloxanes

Abstract

As a supplement to the widely used general AMBER force field, a set of parameters is proposed for molecular dynamics modeling of the structure and properties of polymer chains in polyalkylsiloxane matrices of materials capable of selfhealing after stress loads.

Funders

Ministry of Education and Science of the Russian Federation
FENU 2024-0003

References

.
Software update: The ORCA program system—Version 5.0
Neese F.
Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022
.
Development and testing of a general amber force field
Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A.
Journal of Computational Chemistry, 2004
.
Self-healing polymeric materials
Yang Y., Urban M.W.
Chemical Society Reviews, 2013
.
A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model
Bayly C.I., Cieplak P., Cornell W., Kollman P.A.
The Journal of Physical Chemistry, 1993
.
A Simplex Method for Function Minimization
Nelder J.A., Mead R.
Computer Journal, 1965
.
DREIDING: a generic force field for molecular simulations
Mayo S.L., Olafson B.D., Goddard W.A.
The Journal of Physical Chemistry, 1990
.
Automatic parameterization of force field by systematic search and genetic algorithms
.
A highly stretchable autonomous self-healing elastomer
Li C., Wang C., Keplinger C., Zuo J., Jin L., Sun Y., Zheng P., Cao Y., Lissel F., Linder C., You X., Bao Z.
Nature Chemistry, 2016
.
Cross-Linked Luminescent Polymers Based on β-Diketone-Modified Polysiloxanes and Organoeuropiumsiloxanes
Kim E.E., Kononevich Y.N., Dyuzhikova Y.S., Ionov D.S., Khanin D.A., Nikiforova G.G., Shchegolikhina O.I., Vasil’ev V.G., Muzafarov A.M.
Polymers, 2022
.
Oxidation of Silicon Carbide by O2 and H2O: A ReaxFF Reactive Molecular Dynamics Study, Part I
Newsome D.A., Sengupta D., Foroutan H., Russo M.F., van Duin A.C.
Journal of Physical Chemistry C, 2012
.
Si/C/H ReaxFF Reactive Potential for Silicon Surfaces Grafted with Organic Molecules
Soria F.A., Zhang W., Paredes-Olivera P.A., van Duin A.C., Patrito E.M.
Journal of Physical Chemistry C, 2018
.
New Force-Field for Organosilicon Molecules in the Liquid Phase
Jorge M., Milne A.W., Barrera M.C., Gomes J.R.
ACS Physical Chemistry Au, 2021
.
The development of an Amber-compatible organosilane force field for drug-like small molecules
Dong X., Yuan X., Song Z., Wang Q.
Physical Chemistry Chemical Physics, 2021
.
Nickel(II)-Polysiloxane “Sandwiches” as Electrical Breakdown Protective Materials
Deriabin K.V., Dziuba M.A., Rashevskii A.A., Kolesnikov I.E., Korzhov A.V., Sharov V.A., Vorobyev A., Vereshchagin A.A., Chernukha A.S., Tian J., Levin O.V., Mukhin I.S., Islamova R.M.
ACS Applied Polymer Materials, 2022
.
Molecular modelling of epoxy resin crosslinking experimentally validated by near-infrared spectroscopy
Unger R., Braun U., Fankhänel J., Daum B., Arash B., Rolfes R.
Computational Materials Science, 2019
.
Cross-linked polymer networks based on polysiloxane and nickel β-diketonate precursors
Kim E.E., Kononevich Y.N., Anisimov A.A., Buzin M.I., Vasil'ev V.G., Korlyukov A.A., Ionov D.S., Khanin D.A., Shtykova E.V., Volkov V.V., Muzafarov A.M.
Reactive and Functional Polymers, 2021
.
Molecular Dynamics Study of Cured ED-20 Epoxy Resin for Predicting the Glass Transition Temperature and Relationship with Structure Features
Makarov G., Borodina O., Makarova T., Ignatova A., Olivenko N., Bartashevich E., Sapozhnikov S.
Journal of Physical Chemistry A, 2023
.
Watching (De)Intercalation of 2D Metals in Epitaxial Graphene: Insight into the Role of Defects
Niefind F., Mao Q., Nayir N., Kowalik M., Ahn J., Winchester A.J., Dong C., Maniyara R.A., Robinson J.A., van Duin A.C., Pookpanratana S.
Small, 2023