Home / Publications / A chemical approach for probing the interphase boundary between polymer electrolyte membrane and HT-PEM fuel cell carbon nanofiber anode

A chemical approach for probing the interphase boundary between polymer electrolyte membrane and HT-PEM fuel cell carbon nanofiber anode

Yulia Aleksandrovna Volkova 1
Yulia Aleksandrovna Volkova
Kirill M. Skupov 1
Kirill M. Skupov
Ivan Igorevich Ponomarev 1
Ivan Igorevich Ponomarev
Published 2025-01-24
CommunicationVolume 35, Issue 1, 119-121
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Ponomarev I. I. et al. A chemical approach for probing the interphase boundary between polymer electrolyte membrane and HT-PEM fuel cell carbon nanofiber anode // Mendeleev Communications. 2025. Vol. 35. No. 1. pp. 119-121.
GOST all authors (up to 50) Copy
Ponomarev I. I., Volkova Y. A., Skupov K. M., Vtyurina E. S., Ponomarev I. I. A chemical approach for probing the interphase boundary between polymer electrolyte membrane and HT-PEM fuel cell carbon nanofiber anode // Mendeleev Communications. 2025. Vol. 35. No. 1. pp. 119-121.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.71267/mencom.7562
UR - https://mendcomm.colab.ws/publications/10.71267/mencom.7562
TI - A chemical approach for probing the interphase boundary between polymer electrolyte membrane and HT-PEM fuel cell carbon nanofiber anode
T2 - Mendeleev Communications
AU - Ponomarev, Igor Igorevich
AU - Volkova, Yulia Aleksandrovna
AU - Skupov, Kirill M.
AU - Vtyurina, Elizaveta Sergeevna
AU - Ponomarev, Ivan Igorevich
PY - 2025
DA - 2025/01/24
PB - Mendeleev Communications
SP - 119-121
IS - 1
VL - 35
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Ponomarev,
author = {Igor Igorevich Ponomarev and Yulia Aleksandrovna Volkova and Kirill M. Skupov and Elizaveta Sergeevna Vtyurina and Ivan Igorevich Ponomarev},
title = {A chemical approach for probing the interphase boundary between polymer electrolyte membrane and HT-PEM fuel cell carbon nanofiber anode},
journal = {Mendeleev Communications},
year = {2025},
volume = {35},
publisher = {Mendeleev Communications},
month = {Jan},
url = {https://mendcomm.colab.ws/publications/10.71267/mencom.7562},
number = {1},
pages = {119--121},
doi = {10.71267/mencom.7562}
}
MLA
Cite this
MLA Copy
Ponomarev, Igor Igorevich, et al. “A chemical approach for probing the interphase boundary between polymer electrolyte membrane and HT-PEM fuel cell carbon nanofiber anode.” Mendeleev Communications, vol. 35, no. 1, Jan. 2025, pp. 119-121. https://mendcomm.colab.ws/publications/10.71267/mencom.7562.

Keywords

carbon nanofiber
fuel cells
gas-diffusion electrode.
high-temperature polymer electrolyte membranes
interphase boundary
membrane electrode assembly
polymer electrolyte membrane
proton-conducting membrane
proton-exchange membrane
self-phosphorylating membrane

Abstract

Interphase boundary interactions are essential for high-temperature polymer electrolyte membrane fuel cell membrane electrode assembly (MEA) operation. Interactions between the self-phosphorylating polybenzimidazole (PBI)-6F coating on a carbon nanofiber electrode and the self-phosphorylating proton-conducting membrane during MEA operation would improve the cell performance. The presented approach represents a novel path for the development of a PBI membrane-based MEA.

Funders

Russian Science Foundation
22-13-00065

References

.
.
Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications
Kondratenko M.S., Ponomarev I.I., Gallyamov M.O., Razorenov D.Y., Volkova Y.A., Kharitonova E.P., Khokhlov A.R.
Beilstein Journal of Nanotechnology, 2013
.
Synthesis of N-phosphonoethylated cardo poly(benzimidazole) and testing of proton-conducting membranes made of it
Ponomarev I.I., Ponomarev I.I., Petrovskii P.V., Volkova Y.A., Razorenov D.Y., Goryunova I.B., Starikova Z.A., Fomenkov A.I., Khokhlov A.R.
Doklady Chemistry, 2010
.
High temperature proton exchange membranes based on polybenzimidazoles for fuel cells
Li Q., Jensen J.O., Savinell R.F., Bjerrum N.J.
Progress in Polymer Science, 2009
.
Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges
Bose S., Kuila T., Nguyen T.X., Kim N.H., Lau K., Lee J.H.
Progress in Polymer Science, 2011
.
High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review
Chandan A., Hattenberger M., El-kharouf A., Du S., Dhir A., Self V., Pollet B.G., Ingram A., Bujalski W.
Journal of Power Sources, 2013
.
Current Scenario of Poly (2,5-Benzimidazole) (ABPBI) as Prospective PEM for Application in HT-PEMFC
.
Synthesis and studies of polybenzimidazoles for high-temperature fuel cells
Ponomarev I.I., Razorenov D.Y., Ponomarev I.I., Volkova Y.A., Skupov K.M.
Russian Journal of Electrochemistry, 2014
.
Polybenzimidazoles via polyamidation: A more environmentally safe process to proton conducting membrane for hydrogen HT-PEM fuel cell
Ponomarev I.I., Razorenov D.Y., Ponomarev I.I., Volkova Y.A., Skupov K.M., Lysova A.A., Yaroslavtsev A.B., Modestov A.D., Buzin M.I., Klemenkova Z.S.
European Polymer Journal, 2021
.
New Proton-Conducting Polydiimidazopyridine-Based Membrane for an HT-PEM Fuel Cell
Ponomarev I.I., Razorenov D.Y., Ponomarev I.I., Volkova Y.A., Skupov K.M., Lysova A.A., Yaroslavtsev A.B.
Doklady Chemistry, 2019
.
Synthesis and Properties of New 2,3,5,6-Tetraaminopyridine-Based Polyheteroarylenes
Ponomarev I.I., Razorenov D.Y., Ponomarev I.I., Volkova Y.A., Skupov K.M., Lysova A.A., Yaroslavtsev A.B.
Doklady Chemistry, 2019
.
Polymer Fuel Cell Based on Polybenzimidazole Membrane: A Review
Kalathil A., Raghavan A., Kandasubramanian B.
Polymer-Plastics Technology and Materials, 2018
.
Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress
Aili D., Henkensmeier D., Martin S., Singh B., Hu Y., Jensen J.O., Cleemann L.N., Li Q.
Electrochemical Energy Reviews, 2020
.
A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system
Rosli R.E., Sulong A.B., Daud W.R., Zulkifley M.A., Husaini T., Rosli M.I., Majlan E.H., Haque M.A.
International Journal of Hydrogen Energy, 2017
.
A comprehensive review of PBI-based high temperature PEM fuel cells
Araya S.S., Zhou F., Liso V., Sahlin S.L., Vang J.R., Thomas S., Gao X., Jeppesen C., Kær S.K.
International Journal of Hydrogen Energy, 2016
.
High temperature proton exchange membrane fuel cells: progress in advanced materials and key technologies
Haider R., Wen Y., Ma Z., Wilkinson D.P., Zhang L., Yuan X., Song S., Zhang J.
Chemical Society Reviews, 2021
.
The Effect of the Stabilization and Carbonization Temperatures on the Properties of Microporous Carbon Nanofiber Cathodes for Fuel Cells on Polybenzimidazole Membrane
Skupov K.M., Ponomarev I.I., Vol’fkovich Y.M., Modestov A.D., Ponomarev I.I., Volkova Y.A., Razorenov D.Y., Sosenkin V.E.
Polymer Science - Series C, 2020
.
Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges and perspectives
Qu E., Hao X., Xiao M., Han D., Huang S., Huang Z., Wang S., Meng Y.
Journal of Power Sources, 2022
.
A review of the development of high temperature proton exchange membrane fuel cells
Authayanun S., Im-orb K., Arpornwichanop A.
Chinese Journal of Catalysis, 2015
.
A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs)
Abdul Rasheed R.K., Liao Q., Caizhi Z., Chan S.H.
International Journal of Hydrogen Energy, 2017
.
.
Proton-Conducting Polymer-Coated Carbon Nanofiber Mats for Pt-Anodes of High-Temperature Polymer-Electrolyte Membrane Fuel Cell
Skupov K.M., Ponomarev I.I., Vtyurina E.S., Volkova Y.A., Ponomarev I.I., Zhigalina O.M., Khmelenin D.N., Cherkovskiy E.N., Modestov A.D.
Membranes, 2023
.
Catalyst Development for High Temperature Polymer Electrolyte Membrane Fuel Cell (HT‐PEMFC) Applications
Seselj N., Alfaro S.M., Bompolaki E., Cleemann L.N., Torres T., Azizi K.
Advanced Materials, 2023
.
Self-Phosphorylated Polybenzimidazole: An Environmentally Friendly and Economical Approach for Hydrogen/Air High-Temperature Polymer-Electrolyte Membrane Fuel Cells
Ponomarev I.I., Razorenov D.Y., Skupov K.M., Ponomarev I.I., Volkova Y.A., Lyssenko K.A., Lysova A.A., Vtyurina E.S., Buzin M.I., Klemenkova Z.S.
Membranes, 2023
.
Influence of the Polymer Precursor Structure on the Porosity of Carbon Nanofibers: Application as Electrode in High-Temperature Proton Exchange Membrane Fuel Cells
Vtyurina E.S., Ponomarev I.I., Naumkin A.V., Bukalov S.S., Aysin R.R., Ponomarev I.I., Zhigalina O.M., Khmelenin D.N., Skupov K.M.
ACS Applied Nano Materials, 2024
.
Challenges and opportunities for characterisation of high-temperature polymer electrolyte membrane fuel cells: a review
Zucconi A., Hack J., Stocker R., Suter T.A., Rettie A.J., Brett D.J.
Journal of Materials Chemistry A, 2024
.
Unique Self-Phosphorylating Polybenzimidazole of the 6F Family for HT-PEM Fuel Cell Application
Ponomarev I.I., Volkova Y.A., Skupov K.M., Vtyurina E.S., Ponomarev I.I., Ilyin M.M., Nikiforov R.Y., Alentiev A.Y., Zhigalina O.M., Khmelenin D.N., Strelkova T.V., Modestov A.D.
International Journal of Molecular Sciences, 2024
.
Proton exchange membrane fuel cells: processes–materials–design in current trends
Belmesov Andrey A., Shmygleva Lyubov V., Baranov Alexander A., Levchenko Alexey O.
Russian Chemical Reviews, 2024