Home / Publications / Synthesis of α-(azidomethyl)glutarimide and its applicationin construction of potential Cereblon ligands via the CuAAC reaction

Synthesis of α-(azidomethyl)glutarimide and its applicationin construction of potential Cereblon ligands via the CuAAC reaction

Liliya R Khuzhakhmetova 1
Liliya R Khuzhakhmetova
Anna Alekseevna Ananeva 1
Anna Alekseevna Ananeva
Grigory Pavlovich Kantin 1
Grigory Pavlovich Kantin
Dmitry Viktorovich Dar’in 1, 2
Dmitry Viktorovich Dar’in
Sebastian Ebeling 4
Sebastian Ebeling
Alexander Herrmann 4
Alexander Herrmann
Marcus D Hartmann 4
Marcus D Hartmann
Stanislav A Kalinin 1
Stanislav A Kalinin
Olga Yu Bakulina 1
Olga Yu Bakulina
2 St. Petersburg Research Institute of Phthisiopulmonology, 191036 St. Petersburg, Russian Federation
3 Medicinal Chemistry Center, Togliatti State University, 445020 Togliatti, Russian Federation
4 Department of Protein Evolution, Max Planck Institute for Biology, 72076 Tübingen, Germany
Published 2025-01-24
CommunicationVolume 35, Issue 1, 69-72
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Khuzhakhmetova L. R. et al. Synthesis of α-(azidomethyl)glutarimide and its applicationin construction of potential Cereblon ligands via the CuAAC reaction // Mendeleev Communications. 2025. Vol. 35. No. 1. pp. 69-72.
GOST all authors (up to 50) Copy
Khuzhakhmetova L. R., Ananeva A. A., Kantin G. P., Dar’in D. V., Bunev A. S., Ebeling S., Herrmann A., Hartmann M. D., Kalinin S. A., Bakulina O. Yu. Synthesis of α-(azidomethyl)glutarimide and its applicationin construction of potential Cereblon ligands via the CuAAC reaction // Mendeleev Communications. 2025. Vol. 35. No. 1. pp. 69-72.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.71267/mencom.7543
UR - https://mendcomm.colab.ws/publications/10.71267/mencom.7543
TI - Synthesis of α-(azidomethyl)glutarimide and its applicationin construction of potential Cereblon ligands via the CuAAC reaction
T2 - Mendeleev Communications
AU - Khuzhakhmetova, Liliya R
AU - Ananeva, Anna Alekseevna
AU - Kantin, Grigory Pavlovich
AU - Dar’in, Dmitry Viktorovich
AU - Bunev, Alexander Siyasatovich
AU - Ebeling, Sebastian
AU - Herrmann, Alexander
AU - Hartmann, Marcus D
AU - Kalinin, Stanislav A
AU - Bakulina, Olga Yu
PY - 2025
DA - 2025/01/24
PB - Mendeleev Communications
SP - 69-72
IS - 1
VL - 35
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2025_Khuzhakhmetova,
author = {Liliya R Khuzhakhmetova and Anna Alekseevna Ananeva and Grigory Pavlovich Kantin and Dmitry Viktorovich Dar’in and Alexander Siyasatovich Bunev and Sebastian Ebeling and Alexander Herrmann and Marcus D Hartmann and Stanislav A Kalinin and Olga Yu Bakulina},
title = {Synthesis of α-(azidomethyl)glutarimide and its applicationin construction of potential Cereblon ligands via the CuAAC reaction},
journal = {Mendeleev Communications},
year = {2025},
volume = {35},
publisher = {Mendeleev Communications},
month = {Jan},
url = {https://mendcomm.colab.ws/publications/10.71267/mencom.7543},
number = {1},
pages = {69--72},
doi = {10.71267/mencom.7543}
}
MLA
Cite this
MLA Copy
Khuzhakhmetova, Liliya R., et al. “Synthesis of α-(azidomethyl)glutarimide and its applicationin construction of potential Cereblon ligands via the CuAAC reaction.” Mendeleev Communications, vol. 35, no. 1, Jan. 2025, pp. 69-72. https://mendcomm.colab.ws/publications/10.71267/mencom.7543.
Views / Downloads
1 / 10

Keywords

1
2
3-triazoles
alkynes
azides
Cereblon
click reaction
CuAAC
glutarimide
Pomalidomide.
PROTAC

Abstract

The Michael addition of tetramethylsilyl azide to 3-methylenepiperidine-2,6-dione afforded new glutarimide derivative, 3-(azidomethyl)piperidine-2,6-dione, which was introduced into the CuAAC click reaction with a variety of alkynes to afford thirty novel structurally diverse 1,2,3-triazoles. The cytotoxicity of the synthesized compounds was evaluated on multiple myeloma cell lines (MM1.S, KMS-12-PE), a leukemia cell line (NALM-6), and normal B-cells (WIL2-S) showing a noticeable effect on the MM1.S cell line. Selected compounds demonstrated significant Cereblon binding affinity in a microscale thermophoresis assay with one derivative outperforming the reference drug Pomalidomide.

Funders

Russian Science Foundation
22-13-00005

References

.
SHELXT– Integrated space-group and crystal-structure determination
Sheldrick G.M.
Acta Crystallographica Section A: Foundations and Advances, 2015
.
OLEX2: a complete structure solution, refinement and analysis program
Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A., Puschmann H.
Journal of Applied Crystallography, 2009
.
Replacing the phthalimide core in thalidomide with benzotriazole
Krasavin M., Bubyrev A., Kazantsev A., Heim C., Maiwald S., Zhukovsky D., Dar’in D., Hartmann M.D., Bunev A.
Journal of Enzyme Inhibition and Medicinal Chemistry, 2022
.
Sweet and Blind Spots in E3 Ligase Ligand Space Revealed by a Thermophoresis-Based Assay
Maiwald S., Heim C., Hernandez Alvarez B., Hartmann M.D.
ACS Medicinal Chemistry Letters, 2020
.
Structure of the DDB1–CRBN E3 ubiquitin ligase in complex with thalidomide
Fischer E.S., Böhm K., Lydeard J.R., Yang H., Stadler M.B., Cavadini S., Nagel J., Serluca F., Acker V., Lingaraju G.M., Tichkule R.B., Schebesta M., Forrester W.C., Schirle M., Hassiepen U., et. al.
Nature, 2014
.
PROTAC targeted protein degraders: the past is prologue
Békés M., Langley D.R., Crews C.M.
Nature Reviews Drug Discovery, 2022
.
Chemical Ligand Space of Cereblon
Boichenko I., Bär K., Deiss S., Heim C., Albrecht R., Lupas A.N., Hernandez Alvarez B., Hartmann M.D.
ACS Omega, 2018
.
Synthesis of novel glutarimide ligands for the E3 ligase substrate receptor Cereblon (CRBN): Investigation of their binding mode and antiproliferative effects against myeloma cell lines
Krasavin M., Adamchik M., Bubyrev A., Heim C., Maiwald S., Zhukovsky D., Zhmurov P., Bunev A., Hartmann M.D.
European Journal of Medicinal Chemistry, 2023
.
Identification of a Primary Target of Thalidomide Teratogenicity
Ito T., Ando H., Suzuki T., Ogura T., Hotta K., Imamura Y., Yamaguchi Y., Handa H.
Science, 2010
.
Novel CRBN-Recruiting Proteolysis-Targeting Chimeras as Degraders of Stimulator of Interferon Genes with In Vivo Anti-Inflammatory Efficacy
Liu J., Yuan L., Ruan Y., Deng B., Yang Z., Ren Y., Li L., Liu T., Zhao H., Mai R., Chen J.
Journal of Medicinal Chemistry, 2022
.
Pomalidomide
Lacy M.Q., McCurdy A.R.
Blood, 2013
.
Structural bases of IMiD selectivity that emerges by 5-hydroxythalidomide
Furihata H., Yamanaka S., Honda T., Miyauchi Y., Asano A., Shibata N., Tanokura M., Sawasaki T., Miyakawa T.
Nature Communications, 2020
.
Lenalidomide induces degradation of IKZF1 and IKZF3
Krönke J., Hurst S.N., Ebert B.L.
OncoImmunology, 2014
.
Development of Substituted Phenyl Dihydrouracil as the Novel Achiral Cereblon Ligands for Targeted Protein Degradation
Xie H., Li C., Tang H., Tandon I., Liao J., Roberts B.L., Zhao Y., Tang W.
Journal of Medicinal Chemistry, 2023
.
mTOR pathway activation in multiple myeloma cell lines and primary tumour cells: pomalidomide enhances cytoplasmic-nuclear shuttling of mTOR protein
Guglielmelli T., Giugliano E., Brunetto V., Rapa I., Cappia S., Giorcelli J., Rrodhe S., Papotti M., Saglio G.
Oncoscience, 2015
.
Cereblon neo-substrate binding mimics the recognition of the cyclic imide degron
Heim C., Spring A., Kirchgäßner S., Schwarzer D., Hartmann M.D.
Biochemical and Biophysical Research Communications, 2023
.
Discovery of a Selective and Orally Bioavailable FGFR2 Degrader for Treating Gastric Cancer
Ma L., Li Y., Luo R., Wang Y., Cao J., Fu W., Qian B., Zheng L., Tang L., Lv X., Zheng L., Liang G., Chen L.
Journal of Medicinal Chemistry, 2023
.
Leveraging Ligand Affinity and Properties: Discovery of Novel Benzamide-Type Cereblon Binders for the Design of PROTACs
Steinebach C., Bricelj A., Murgai A., Sosič I., Bischof L., Ng Y.L., Heim C., Maiwald S., Proj M., Voget R., Feller F., Košmrlj J., Sapozhnikova V., Schmidt A., Zuleeg M.R., et. al.
Journal of Medicinal Chemistry, 2023
.
Design and Synthesis of Novel Cereblon Binders for Use in Targeted Protein Degradation
Norris S., Ba X., Rhodes J., Huang D., Khambatta G., Buenviaje J., Nayak S., Meiring J., Reiss S., Xu S., Shi L., Whitefield B., Alexander M., Horn E.J., Correa M., et. al.
Journal of Medicinal Chemistry, 2023
.
Proteolysis-targeting chimeras with reduced off-targets
Nguyen T.M., Sreekanth V., Deb A., Kokkonda P., Tiwari P.K., Donovan K.A., Shoba V., Chaudhary S.K., Mercer J.A., Lai S., Sadagopan A., Jan M., Fischer E.S., Liu D.R., Ebert B.L., et. al.
Nature Chemistry, 2023
.
Annual review of PROTAC degraders as anticancer agents in 2022
Wang X., Qin Z., Li N., Jia M., Liu Q., Bai Y., Song J., Yuan S., Zhang S.
European Journal of Medicinal Chemistry, 2024
.
Design, synthesis, and biological evaluation of first-in-class indomethacin-based PROTACs degrading SARS-CoV-2 main protease and with broad-spectrum antiviral activity
Desantis J., Bazzacco A., Eleuteri M., Tuci S., Bianconi E., Macchiarulo A., Mercorelli B., Loregian A., Goracci L.
European Journal of Medicinal Chemistry, 2024
.
Discovery and Characterization of a Novel Cereblon-Recruiting PRC1 Bridged PROTAC Degrader
Kabir M., Qin L., Luo K., Xiong Y., Sidi R.A., Park K., Jin J.
Journal of Medicinal Chemistry, 2024