Home / Publications / Creation of biocidal polyethylene surface using plasma

Creation of biocidal polyethylene surface using plasma

Vyacheslav Mikhailovich Misin 1
Vyacheslav Mikhailovich Misin
Sergey Aleksandrovich Smirnov 2
Sergey Aleksandrovich Smirnov
Tatyana Grigoryevna Shikova 2
Tatyana Grigoryevna Shikova
Igor V Kholodkov 2
Igor V Kholodkov
Nataliya G Loiko 3
Nataliya G Loiko
Alexander Andreevich Maltsev 1
Alexander Andreevich Maltsev
Mikhail Victorovich Voronkov 1
Mikhail Victorovich Voronkov
Vladimir Anatol'evich Volkov 1
Vladimir Anatol'evich Volkov
1 N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
2 Ivanovo State University of Chemistry and Technology, Ivanovo, Russian Federation
3 Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russian Federation
Published 2024-10-22
CommunicationVolume 34, Issue 6, 884-886
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Misin V. M. et al. Creation of biocidal polyethylene surface using plasma // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 884-886.
GOST all authors (up to 50) Copy
Misin V. M., Smirnov S. A., Shikova T. G., Kholodkov I. V., Loiko N. G., Maltsev A. A., Voronkov M. V., Volkov V. A. Creation of biocidal polyethylene surface using plasma // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 884-886.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.10.036
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.036
TI - Creation of biocidal polyethylene surface using plasma
T2 - Mendeleev Communications
AU - Misin, Vyacheslav Mikhailovich
AU - Smirnov, Sergey Aleksandrovich
AU - Shikova, Tatyana Grigoryevna
AU - Kholodkov, Igor V
AU - Loiko, Nataliya G
AU - Maltsev, Alexander Andreevich
AU - Voronkov, Mikhail Victorovich
AU - Volkov, Vladimir Anatol'evich
PY - 2024
DA - 2024/10/22
PB - Mendeleev Communications
SP - 884-886
IS - 6
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Misin,
author = {Vyacheslav Mikhailovich Misin and Sergey Aleksandrovich Smirnov and Tatyana Grigoryevna Shikova and Igor V Kholodkov and Nataliya G Loiko and Alexander Andreevich Maltsev and Mikhail Victorovich Voronkov and Vladimir Anatol'evich Volkov},
title = {Creation of biocidal polyethylene surface using plasma},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Oct},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.036},
number = {6},
pages = {884--886},
doi = {10.1016/j.mencom.2024.10.036}
}
MLA
Cite this
MLA Copy
Misin, Vyacheslav Mikhailovich, et al. “Creation of biocidal polyethylene surface using plasma.” Mendeleev Communications, vol. 34, no. 6, Oct. 2024, pp. 884-886. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.036.

Keywords

bactericide.
graft copolymer
low-density polyethylene
N
N-diallyl-N
N-dimethylammonium chloride
plasma

Abstract

After grafting the N,N-dimethyl-N,N-diallylammonium chloride (DADMAC) polymer to low-density polyethylene (LDPE) using plasma, the polyethylene surface acquired wettability with water. The synthesized graft copolymer turned out to be bactericidal against gram-positive Staphylococcus aureus and gram-negative Escherichia coli.

References

.
Biocidal Polymer Formulations and Coatings
Misin V.M., Zezin A.A., Klimov D.I., Sybachin A.V., Yaroslavov A.A.
Polymer Science - Series B, 2021
.
Antibacterial and Antiviral Functional Materials: Chemistry and Biological Activity toward Tackling COVID-19-like Pandemics
Balasubramaniam B., Prateek, Ranjan S., Saraf M., Kar P., Singh S.P., Thakur V.K., Singh A., Gupta R.K.
ACS Pharmacology & Translational Science, 2020
.
Panova I.G., Lokova A.Y., Bagrov D.V., Loiko N.G., Nikolaev Y.A., Yaroslavov A.A.
Mendeleev Communications, 2023
.
Antimicrobial N-brominated hydantoin and uracil grafted polystyrene beads
Farah S., Aviv O., Laout N., Ratner S., Domb A.J.
Journal of Controlled Release, 2015
.
Targeting microbial biofilms: current and prospective therapeutic strategies
Koo H., Allan R.N., Howlin R.P., Stoodley P., Hall-Stoodley L.
Nature Reviews Microbiology, 2017
.
Biofilm contamination of high‐touched surfaces in intensive care units: epidemiology and potential impacts
Costa D.M., Johani K., Melo D.S., Lopes L.K., Lopes Lima L.K., Tipple A.F., Hu H., Vickery K.
Letters in Applied Microbiology, 2019
.
Microbial and Enzymatic Degradation of Synthetic Plastics
Mohanan N., Montazer Z., Sharma P.K., Levin D.B.
Frontiers in Microbiology, 2020
.
Cyclopolymerization of N,N-Dialkyldiallylammonium Halides. A Review and Use Analysis
Ottenbrite R.M., Ryan W.S.
Industrial & Engineering Chemistry Product Research and Development, 1980
.
Biofilm, City of Microbes
Watnick P., Kolter R.
Journal of Bacteriology, 2000
.
Biological activity of quaternary ammonium salts and resistance of microorganisms to these compounds
Obłąk E., Futoma-Kołoch B., Wieczyńska A.
World Journal of Microbiology and Biotechnology, 2021
.
Fungi and Mycotoxins in Space—A Review
De Middeleer G., Leys N., Sas B., De Saeger S.
Astrobiology, 2019
.
Cationic Quaternary Polyelectrolytes—A Literature Review
Hoover M.F.
Journal of Macromolecular Science Part A - Chemistry, 1970
.
Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films
Gupta B., Hilborn J.G., Bisson I., Frey P.
Journal of Applied Polymer Science, 2001
.
Antimicrobial activity of a monomer and its polymer based on quinolone
Moon W., Chul Kim J., Chung K., Park E., Kim M., Yoon J.
Journal of Applied Polymer Science, 2003
.
Radiation-induced grafting of diallyldimethylammonium chloride onto acrylic acid grafted polyethylene
Francis S., Dhanawade B.R., Mitra D., Varshney L., Sabharwal S.
Radiation Physics and Chemistry, 2009
.
Allsopp D., Seal K.J., Gaylarde C.C.
2004
.
Ultrathin antibacterial polyammonium coatings on polymer surfaces
Thome J., Holländer A., Jaeger W., Trick I., Oehr C.
Surface and Coatings Technology, 2003
.
METHODS OF PREVENTING BIOFILMS FORMATION ON THE SURFACES OF POLYMER MATERIALS
Lyusova L.R., Ilyin А.А., Shibryaeva L.S.
Fine Chemical Technologies, 2018
.
Antibacterial properties of poly (N,N-dimethylaminoethyl methacrylate) obtained at different initiator concentrations in solution polymerization
Stawski D., Rolińska K., Zielińska D., Sahariah P., Hjálmarsdóttir M.Á., Másson M.
Royal Society Open Science, 2022
.
Synthesis and properties of vinyl benzyl alcohol copolymers with styrene
Gusarov M.V., Krylov A.V., Deshevaya E.A., Tverskoy V.A.
Fine Chemical Technologies, 2021
.
How biofilm changes our understanding of cleaning and disinfection
Maillard J., Centeleghe I.
Antimicrobial Resistance and Infection Control, 2023
.
Panova I.G., Lokova A.Y., Pankratov T.A., Nikolaev Y.A., Yaroslavov A.A.
Mendeleev Communications, 2024
.
Immobilization of N,N‐diallyl‐N,N‐dimethylammonium chloride on polyethylene. Biocidal properties of the material
Misin V.M., Zezin A.A., Zezina E.A., Loiko N.G., Maltsev A.A., Maltseva I.E., Grafov O.Y., Prokhorov V.V., Pozin S.I.
Journal of Applied Polymer Science, 2024