Home / Publications / Impact of electron transport layer uniformity on field-induced degradation of inverted perovskite solar cells

Impact of electron transport layer uniformity on field-induced degradation of inverted perovskite solar cells

Nikita Alexandrovich Emelianov
Anastasia Andreevna Bizyaeva 1, 2
Anastasia Andreevna Bizyaeva
Mikhail S Leshchev 1
Mikhail S Leshchev
Pavel Anatol'evich Troshin
1 Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation
2 D.Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
3 Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
Published 2024-10-22
CommunicationVolume 34, Issue 6, 844-846
1
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Emelianov N. A. et al. Impact of electron transport layer uniformity on field-induced degradation of inverted perovskite solar cells // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 844-846.
GOST all authors (up to 50) Copy
Emelianov N. A., Ozerova V. V., Bizyaeva A. A., Leshchev M. S., Troshin P. A. Impact of electron transport layer uniformity on field-induced degradation of inverted perovskite solar cells // Mendeleev Communications. 2024. Vol. 34. No. 6. pp. 844-846.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.10.024
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.024
TI - Impact of electron transport layer uniformity on field-induced degradation of inverted perovskite solar cells
T2 - Mendeleev Communications
AU - Emelianov, Nikita Alexandrovich
AU - Ozerova, Victoria Victorovna
AU - Bizyaeva, Anastasia Andreevna
AU - Leshchev, Mikhail S
AU - Troshin, Pavel Anatol'evich
PY - 2024
DA - 2024/10/22
PB - Mendeleev Communications
SP - 844-846
IS - 6
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Emelianov,
author = {Nikita Alexandrovich Emelianov and Victoria Victorovna Ozerova and Anastasia Andreevna Bizyaeva and Mikhail S Leshchev and Pavel Anatol'evich Troshin},
title = {Impact of electron transport layer uniformity on field-induced degradation of inverted perovskite solar cells},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Oct},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.024},
number = {6},
pages = {844--846},
doi = {10.1016/j.mencom.2024.10.024}
}
MLA
Cite this
MLA Copy
Emelianov, Nikita Alexandrovich, et al. “Impact of electron transport layer uniformity on field-induced degradation of inverted perovskite solar cells.” Mendeleev Communications, vol. 34, no. 6, Oct. 2024, pp. 844-846. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.10.024.

Keywords

electric field-induced degradation
electron transport materials
PC61BM
perovskite solar cells
pyrrolidinofullerenes

Abstract

The impact of different electron transport layers (ETLs) based on fullerene derivatives, such as the well-known PC61BM and promising 3-pyridyl-substituted pyrrolidino[60]fullerene (PYF-30), on the electric field-induced degradation of inverted perovskite solar cells has been demonstrated. Devices assembled using PYF-30 and PC61BM deposited from deuterated chloroform exhibit significantly higher stability compared to PC61BM films deposited from chlorobenzene. The main reason for the decrease in the efficiency of the device during aging is the formation of pinhole-type defects in the ETL caused by the agglomeration of molecules of fullerene derivatives.

References

1.
An efficient [2+3] cycloaddition approach to the synthesis of pyridyl- appended fullerene ligands
Troshin P.A., Peregudov A.S., Mühlbacher D., Lyubovskaya R.N.
European Journal of Organic Chemistry, 2005
2.
Pyrrolidino[2,1–a]phthalazino[60]fullerenes: A New Family of Fullerene Derivatives for Photovoltaic Applications
Mumyatov A.V., Chernyak A.V., Elnaggar M.M., Kuznetsov P.M., Shestakov A.F., Troshin P.A.
Physica Status Solidi - Rapid Research Letters, 2021
3.
Solubility of C60 and PCBM in Organic Solvents
Wang C.I., Hua C.C.
Journal of Physical Chemistry B, 2015
5.
Designing New Indene-Fullerene Derivatives as Electron-Transporting Materials for Flexible Perovskite Solar Cells
Przypis L., Ahmad T., Misztal K., Honisz D., Radicchi E., Mosconi E., Domagala W., De Angelis F., Wojciechowski K.
Journal of Physical Chemistry C, 2021
6.
The role of fullerene derivatives in perovskite solar cells: electron transporting or electron extraction layers?
Fernandez-Delgado O., Chandrasekhar P.S., Cano-Sampaio N., Simon Z.C., Puente-Santiago A.R., Liu F., Castro E., Echegoyen L.
Journal of Materials Chemistry C, 2021
7.
How to stabilize standard perovskite solar cells to withstand operating conditions under an ambient environment for more than 1000 hours using simple and universal encapsulation
8.
Effective Interfaces between Fullerene Derivatives and CH3NH3PbI3 to Improve Perovskite Solar Cell Performance
Montero-Alejo A.L., Barría-Cáceres F., Lodeiro L., Menéndez-Proupin E.
Journal of Physical Chemistry C, 2023
9.
Defects at the interface electron transport layer and alternative counter electrode, their impact on perovskite solar cells performance
Montoya D.M., Pérez-Gutiérrez E., Barbosa-Garcia O., Bernal W., Maldonado J., Percino M.J., Meneses M., Cerón M.
Solar Energy, 2020
10.
Highly efficient electron transport based on double-layered PC61BM in inverted perovskite solar cells
Younes E.M., Gurung A., Bahrami B., El-Maghraby E.M., Qiao Q.
Organic Electronics, 2022
11.
Rational Design of Fullerene Derivatives for Improved Stability of p-i-n Perovskite Solar Cells
Ozerova V.V., Mumyatov A.V., Goryachev A.E., Khakina E.A., Peregudov A.S., Aldoshin S.M., Troshin P.A.
Inorganics, 2023
12.
Kuznetsov I.E., Sideltsev M.E., Kurbatov V.G., Klyuev M.V., Akkuratov A.V.
Mendeleev Communications, 2022
13.
Recent Advances in Functionalized Fullerenes in Perovskite Solar Cells
Ai M., Chen M., Yang S.
Chinese Journal of Chemistry, 2023
14.
Sadretdinova Z.R., Akhmetov A.R., Salikhov R.B., Mullagaliev I.N., Salikhov T.R.
Mendeleev Communications, 2023
15.
What defines the perovskite solar cell efficiency and stability: fullerene-based ETL structure or film morphology?
Elnaggar M.M., Mumyatov A.V., Emelianov N.A., Gutsev L.G., Ozerova V., Fedyanin I.V., Nelyubina Y.V., Troyanov S.I., Ramachandran B.R., Troshin P.
Sustainable Energy and Fuels, 2023
16.
In Situ IR Spectroscopy Studies of Atomic Layer-Deposited SnO2 on Formamidinium-Based Lead Halide Perovskite
Bracesco A.E., Jansen J.W., Xue H., Zardetto V., Brocks G., Kessels W.M., Tao S., Creatore M.
ACS applied materials & interfaces, 2023
17.
Udalova N.N., Chertorizhskiy N.N., Nemygina E.N., Trubnikov A.V., Kurkin A.V., Goodilin E.A., Tarasov A.B.
Mendeleev Communications, 2023
18.
Impact of the hole-transport layer materials on the field-induced degradation of p-i-n perovskite solar cells
Ozerova V., Emelianov N.A., Frolova L., Fedotov Y.S., Bredikhin S., Aldoshin S.M., Troshin P.
Sustainable Energy and Fuels, 2024