Home / Publications / Thermodynamics of the formation of polyynes and aromatic species from methane and acetylene

Thermodynamics of the formation of polyynes and aromatic species from methane and acetylene

Emmanuel Busillo 1
Emmanuel Busillo
Pavel Alexandrovich Vlasov 2
Pavel Alexandrovich Vlasov
Vladimir Nikolaevich Smirnov 2
Vladimir Nikolaevich Smirnov
Vladimir Sergeevich Arutyunov
1 National University of Oil and Gas ‘Gubkin University’, Moscow, Russian Federation
2 N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
3 Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation
Published 2024-09-09
CommunicationVolume 34, Issue 5, 762-765
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Busillo E. et al. Thermodynamics of the formation of polyynes and aromatic species from methane and acetylene // Mendeleev Communications. 2024. Vol. 34. No. 5. pp. 762-765.
GOST all authors (up to 50) Copy
Busillo E., Vlasov P. A., Savchenko V. I., Smirnov V. N., Arutyunov V. S. Thermodynamics of the formation of polyynes and aromatic species from methane and acetylene // Mendeleev Communications. 2024. Vol. 34. No. 5. pp. 762-765.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.09.044
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.09.044
TI - Thermodynamics of the formation of polyynes and aromatic species from methane and acetylene
T2 - Mendeleev Communications
AU - Busillo, Emmanuel
AU - Vlasov, Pavel Alexandrovich
AU - Savchenko, Valerii Ivanovich
AU - Smirnov, Vladimir Nikolaevich
AU - Arutyunov, Vladimir Sergeevich
PY - 2024
DA - 2024/09/09
PB - Mendeleev Communications
SP - 762-765
IS - 5
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Busillo,
author = {Emmanuel Busillo and Pavel Alexandrovich Vlasov and Valerii Ivanovich Savchenko and Vladimir Nikolaevich Smirnov and Vladimir Sergeevich Arutyunov},
title = {Thermodynamics of the formation of polyynes and aromatic species from methane and acetylene},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Sep},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.09.044},
number = {5},
pages = {762--765},
doi = {10.1016/j.mencom.2024.09.044}
}
MLA
Cite this
MLA Copy
Busillo, Emmanuel, et al. “Thermodynamics of the formation of polyynes and aromatic species from methane and acetylene.” Mendeleev Communications, vol. 34, no. 5, Sep. 2024, pp. 762-765. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.09.044.

Keywords

Acetylene
aromatic compounds
methane
polyynes
quantum chemical calculations
thermodynamic analysis

Abstract

The Gibbs free energies of the formation of several polyynes (C6H2, C10H2 and C16H2) and aromatic species (C6H6, C10H8 and C16H10) from methane and acetylene at temperatures of 1000–2600 K and atmospheric pressure were obtained by quantum chemical calculations using the RI-MP2 method in the ORCA open source software. At lower temperatures, aromatic species form more readily than polyynes, while at temperatures >2200 K the trend reverses and polyyne formation becomes predominant.

References

1.
Use of approximate integrals in ab initio theory. An application in MP2 energy calculations
3.
The ORCA quantum chemistry program package
Neese F., Wennmohs F., Becker U., Riplinger C.
Journal of Chemical Physics, 2020
5.
Detailed modeling of soot particle nucleation and growth
Frenklach M., Wang H.
Symposium (International) on Combustion, 1991
6.
Exploring the Role of PAHs in the Formation of Soot: Pyrene Dimerization
Sabbah H., Biennier L., Klippenstein S.J., Sims I.R., Rowe B.R.
Journal of Physical Chemistry Letters, 2010
7.
Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity
von Helden G., Hsu M.T., Gotts N., Bowers M.T.
The Journal of Physical Chemistry, 1993
8.
Unified kinetic model of soot formation in the pyrolysis and oxidation of aliphatic and aromatic hydrocarbons in shock waves
Agafonov G.L., Bilera I.V., Vlasov P.A., Zhil’tsova I.V., Kolbanovskii Y.A., Smirnov V.N., Tereza A.M.
Kinetics and Catalysis, 2016
9.
Soot formation
Haynes B.S., Wagner H.G.
Progress in Energy and Combustion Science, 1981
10.
Methane pyrolysis: thermodynamics
Guéret C., Daroux M., Billaud F.
Chemical Engineering Science, 1997
11.
Polyyne model of soot formation process
Krestinin A.V.
Symposium (International) on Combustion, 1998
12.
Some new aspects of the mechanism of carbon formation in premixed flames
Homann K.H., Wagner H.G.
Symposium (International) on Combustion, 1967
13.
Optical and Spectroscopic Characterization of Rich Premixed Flames across the Soot Formation Threshold
MINUTOLO P., GAMBI G., D'ALESSIO A., D'ANNA A.
Combustion Science and Technology, 1994
15.
Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures
Ranzi E., Dente M., Goldaniga A., Bozzano G., Faravelli T.
Progress in Energy and Combustion Science, 2001
16.
Carbon formation in premixed flames
Bonne U., Homann K.H., Wagner H.G.
Symposium (International) on Combustion, 1965
17.
Soot inception: Carbonaceous nanoparticle formation in flames
Martin J.W., Salamanca M., Kraft M.
Progress in Energy and Combustion Science, 2022
18.
Clustering at high temperatures: carbon formation in combustion
Siegmann K., Sattler K., Siegmann H.C.
Journal of Electron Spectroscopy and Related Phenomena, 2002
20.
Non-Catalytic Partial Oxidation of Hydrocarbon Gases to Syngas and Hydrogen: A Systematic Review
Makaryan I.A., Salgansky E.A., Arutyunov V.S., Sedov I.V.
Energies, 2023
21.
Busillo E., Vlasov P., Arutyunov V.
Mendeleev Communications, 2022