Home / Publications / Polynitropyrazole derivatives of pentanitroisowurtzitane

Polynitropyrazole derivatives of pentanitroisowurtzitane

Sergey Vital'evich Nikitin 1
Sergey Vital'evich Nikitin
Nina Ivanovna Shlykova 1
Nina Ivanovna Shlykova
Igor L'vovich Dalinger 1
Igor L'vovich Dalinger
Gennady Alexandrovich Smirnov 1
Gennady Alexandrovich Smirnov
Igor Nikitich Melnikov 2
Igor Nikitich Melnikov
2 N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
Published 2024-09-09
CommunicationVolume 34, Issue 5, 703-705
1
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Nikitin S. V. et al. Polynitropyrazole derivatives of pentanitroisowurtzitane // Mendeleev Communications. 2024. Vol. 34. No. 5. pp. 703-705.
GOST all authors (up to 50) Copy
Nikitin S. V., Shlykova N. I., Dalinger I. L., Smirnov G. A., Melnikov I. N. Polynitropyrazole derivatives of pentanitroisowurtzitane // Mendeleev Communications. 2024. Vol. 34. No. 5. pp. 703-705.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.09.025
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.09.025
TI - Polynitropyrazole derivatives of pentanitroisowurtzitane
T2 - Mendeleev Communications
AU - Nikitin, Sergey Vital'evich
AU - Shlykova, Nina Ivanovna
AU - Dalinger, Igor L'vovich
AU - Smirnov, Gennady Alexandrovich
AU - Melnikov, Igor Nikitich
PY - 2024
DA - 2024/09/09
PB - Mendeleev Communications
SP - 703-705
IS - 5
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Nikitin,
author = {Sergey Vital'evich Nikitin and Nina Ivanovna Shlykova and Igor L'vovich Dalinger and Gennady Alexandrovich Smirnov and Igor Nikitich Melnikov},
title = {Polynitropyrazole derivatives of pentanitroisowurtzitane},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Sep},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.09.025},
number = {5},
pages = {703--705},
doi = {10.1016/j.mencom.2024.09.025}
}
MLA
Cite this
MLA Copy
Nikitin, Sergey Vital'evich, et al. “Polynitropyrazole derivatives of pentanitroisowurtzitane.” Mendeleev Communications, vol. 34, no. 5, Sep. 2024, pp. 703-705. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.09.025.

Keywords

10
12-hexaazaisowurtzitane
12-pentanitro-2
2
4
6
8
alkylation
energy characteristics.
explosive properties
physicochemical properties
Polynitropyrazoles

Abstract

High energetic compounds of pentanitroisowurtzitane series containing various polynitropyrazolyl substituents attached to the frame through a methylene linker were synthesized in two steps from the corresponding NH precursors and paraformaldehyde. The structures of the compounds obtained were characterized by spectral methods, and their energy characteristics were estimated.

References

.
Nitro compounds as the core structures of promising energetic materials and versatile reagents for organic synthesis
Zlotin S.G., Dalinger I.L., Makhova N.N., Tartakovsky V.A.
Russian Chemical Reviews, 2020
.
Improving the Energetic Properties of Dinitropyrazoles by Utilization of Current Concepts
Bölter M.F., Klapötke T.M., Kustermann T., Lenz T., Stierstorfer J.
European Journal of Inorganic Chemistry, 2018
.
5-Amino-3,4-dinitropyrazole as a Promising Energetic Material
Muravyev N.V., Bragin A.A., Monogarov K.A., Nikiforova A.S., Korlyukov A.A., Fomenkov I.V., Shishov N.I., Pivkina A.N.
Propellants, Explosives, Pyrotechnics, 2016
.
Energetic N-azidomethyl derivatives of polynitro hexaazaisowurtzitanes series: CL-20 analogues having the highest enthalpy
Luk′yanov O.A., Parakhin V.V., Shlykova N.I., Dmitrienko A.O., Melnikova E.K., Kon'kova T.S., Monogarov K.A., Meerov D.B.
New Journal of Chemistry, 2020
.
Optimization of the key steps of synthesis and study of the fundamental physicochemical properties of high energy compounds — 4-(2,2,2-trinitroethyl)-2,6,8,10,12-pentanitrohexaazaisowurtzitane and 4,10-bis(2,2,2-trinitroethyl)-2,6,8,12-tetranitrohexaazaisowurtzitane
Luk´yanov O.A., Shlykova N.I., Pokhvisneva G.V., Ternikova T.V., Nikitin S.V., Smirnov G.A., Nelubina Y.V., Dorovatovskii P.V., Kon´kova T.S., Murav´yov N.V., Pivkina A.N.
Russian Chemical Bulletin, 2017
.
High-energy 4(10)-2-fluoro-2,2-dinitroethyl and 4(10)-2,2-dinitropropyl derivatives of polynitrohexaazaisowurtzitanes
Luk′yanov O.A., Shlykova N.I., Pokhvisneva G.V., Ternikova T.V., Monogarov K.A., Meerov D.B., Nelyubina Y.V., Dorovatovskii P.V., Kon′kova T.S.
Russian Chemical Bulletin, 2019
.
Synthesis and Investigation of Advanced Energetic Materials Based on Bispyrazolylmethanes
Fischer D., Gottfried J.L., Klapötke T.M., Karaghiosoff K., Stierstorfer J., Witkowski T.G.
Angewandte Chemie - International Edition, 2016
.
CL-20-Based Cocrystal Energetic Materials: Simulation, Preparation and Performance
Pang W., Wang K., Zhang W., Luca L.T., Fan X., Li J.
Molecules, 2020
.
Polynitro‐Functionalized Dipyrazolo‐1,3,5‐triazinanes: Energetic Polycyclization toward High Density and Excellent Molecular Stability
Yin P., Zhang J., Imler G.H., Parrish D.A., Shreeve J.M.
Angewandte Chemie - International Edition, 2017
.
EnergeticN,N′-Ethylene-Bridged Bis(nitropyrazoles): Diversified Functionalities and Properties
Yin P., Zhang J., Parrish D.A., Shreeve J.M.
Chemistry - A European Journal, 2014
.
Synthesis and Comparison of the Reactivity of 3,4,5-1H-Trinitropyrazole and ItsN-Methyl Derivative
Dalinger I.L., Vatsadze I.A., Shkineva T.K., Popova G.P., Shevelev S.A., Nelyubina Y.V.
Journal of Heterocyclic Chemistry, 2013
.
Fused heterocycle-based energetic materials (2012–2019)
Gao H., Zhang Q., Shreeve J.M.
Journal of Materials Chemistry A, 2020
.
Learning to fly: thermochemistry of energetic materials by modified thermogravimetric analysis and highly accurate quantum chemical calculations.
Muravyev N.V., Monogarov K.A., Melnikov I.N., Pivkina A.N., Kiselev V.G.
Physical Chemistry Chemical Physics, 2021
.
Dinitropyrazoles
Zaitsev A.A., Dalinger I.L., Shevelev S.A.
Russian Chemical Reviews, 2009
.
Progress and performance of energetic materials: open dataset, tool, and implications for synthesis
Muravyev N.V., Wozniak D.R., Piercey D.G.
Journal of Materials Chemistry A, 2022
.
Recent Advances in Synthesis and Properties of Nitrated-Pyrazoles Based Energetic Compounds
Zhang S., Gao Z., Lan D., Jia Q., Liu N., Zhang J., Kou K.
Molecules, 2020
.
Polynitro-Functionalized Azopyrazole with High Performance and Low Sensitivity as Novel Energetic Materials
Zhang G., Yi Z., Cheng G., Yang W., Yang H.
ACS applied materials & interfaces, 2022
.
Covalent and Ionic Insensitive High‐Explosives
Klapötke T.M., Witkowski T.G.
Propellants, Explosives, Pyrotechnics, 2016
.
Nitropyrazoles 20. Synthesis and transformations of 1-methoxymethyl-3,4,5-trinitropyrazole
Dalinger I.L., Vatsadze I.A., Shkineva T.K., Popova G.P., Shevelev S.A.
Russian Chemical Bulletin, 2012
.
Formyl azido substituted nitro hexaazaisowurtzitane – synthesis, characterization and energetic properties
Dong K., Wang Y., Gong X., Zhang J., Sun C., Pang S.
New Journal of Chemistry, 2013
.
Energized nitro-substituted azoles through ether bridges
Tang Y., He C., Gao H., Shreeve J.M.
Journal of Materials Chemistry A, 2015
.
Melt-cast materials: combining the advantages of highly nitrated azoles and open-chain nitramines
Klapötke T.M., Penger A., Pflüger C., Stierstorfer J.
New Journal of Chemistry, 2016
.
Artificial intelligence-enhanced quantum chemical method with broad applicability
Zheng P., Zubatyuk R., Wu W., Isayev O., Dral P.O.
Nature Communications, 2021
.
Novel energetic CNO oxidizer: Pernitro-substituted pyrazolyl-furazan framework
Dalinger I.L., Shkineva T.K., Vatsadze I.A., Kormanov A.V., Kozeev A.M., Suponitsky K.Y., Pivkina A.N., Sheremetev A.B.
FirePhysChem, 2021
.
Advanced Open‐Chain Nitramines as Energetic Materials: Heterocyclic‐Substituted 1,3‐Dichloro‐2‐nitrazapropane
Klapötke T.M., Penger A., Pflüger C., Stierstorfer J., Sućeska M.
European Journal of Inorganic Chemistry, 2013