Home / Publications / Is dual emission of copper subgroup d10-metal complexes a necessary and sufficient condition for ratiometric luminescence thermometry?

Is dual emission of copper subgroup d10-metal complexes a necessary and sufficient condition for ratiometric luminescence thermometry?

Igor Dmitrievich Strelnik 1
Igor Dmitrievich Strelnik
Ilya Evgenievich Kolesnikov 2
Ilya Evgenievich Kolesnikov
Alexey Andreevich Kalinichev 2
Alexey Andreevich Kalinichev
Tatiana Pavlovna Gerasimova 1
Tatiana Pavlovna Gerasimova
Kamil Dinarovich Akhmadgaleev 1
Kamil Dinarovich Akhmadgaleev
Irina Rishatovna Dayanova 1
Irina Rishatovna Dayanova
Andrey Anatol'evich Karasik 1
Andrey Anatol'evich Karasik
1 A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russian Federation
2 Center for Optical and Laser Materials Research, St. Petersburg State University, Peterhof, St. Petersburg, Russian Federation
Published 2024-06-19
CommunicationVolume 34, Issue 4, 457-471
11
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Strelnik I. D. et al. Is dual emission of copper subgroup d10-metal complexes a necessary and sufficient condition for ratiometric luminescence thermometry? // Mendeleev Communications. 2024. Vol. 34. No. 4. pp. 457-471.
GOST all authors (up to 50) Copy
Strelnik I. D., Kolesnikov I. E., Kalinichev A. A., Gerasimova T. P., Akhmadgaleev K. D., Dayanova I. R., Karasik A. A. Is dual emission of copper subgroup d10-metal complexes a necessary and sufficient condition for ratiometric luminescence thermometry? // Mendeleev Communications. 2024. Vol. 34. No. 4. pp. 457-471.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.06.001
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.06.001
TI - Is dual emission of copper subgroup d10-metal complexes a necessary and sufficient condition for ratiometric luminescence thermometry?
T2 - Mendeleev Communications
AU - Strelnik, Igor Dmitrievich
AU - Kolesnikov, Ilya Evgenievich
AU - Kalinichev, Alexey Andreevich
AU - Gerasimova, Tatiana Pavlovna
AU - Akhmadgaleev, Kamil Dinarovich
AU - Dayanova, Irina Rishatovna
AU - Karasik, Andrey Anatol'evich
PY - 2024
DA - 2024/06/19
PB - Mendeleev Communications
SP - 457-471
IS - 4
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Strelnik,
author = {Igor Dmitrievich Strelnik and Ilya Evgenievich Kolesnikov and Alexey Andreevich Kalinichev and Tatiana Pavlovna Gerasimova and Kamil Dinarovich Akhmadgaleev and Irina Rishatovna Dayanova and Andrey Anatol'evich Karasik},
title = {Is dual emission of copper subgroup d10-metal complexes a necessary and sufficient condition for ratiometric luminescence thermometry?},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Jun},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.06.001},
number = {4},
pages = {457--471},
doi = {10.1016/j.mencom.2024.06.001}
}
MLA
Cite this
MLA Copy
Strelnik, Igor Dmitrievich, et al. “Is dual emission of copper subgroup d10-metal complexes a necessary and sufficient condition for ratiometric luminescence thermometry?.” Mendeleev Communications, vol. 34, no. 4, Jun. 2024, pp. 457-471. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.06.001.

Keywords

copper complexes
d10-complexes
dual emission
gold complexes
luminescent materials.
luminescent thermochromism
ratiometric thermometry
silver complexes

Abstract

Transition metal complexes of copper subgroup metals are actively studied objects for temperature sensors. Their luminescence arising from the 3ILCT, 3MLCT or 3CC excited states is characterized by emission in all ranges of visible spectra and high quantum yields. Due to the ability of the complexes to emit in a dual band mode, these complexes are attractive for the temperature sensing in the ratiometric mode. Dual emission of complexes is usually susceptible of the irregular changes in intensity of two emission bands during the temperature changes. This is an important and necessary property for the utilization of phosphors as ratiometric thermometers. The structures and emission properties of gold(i) and copper(i) complexes are considered with the aim to demonstrate the possibility to apply such complexes as ratiometric molecular luminescent thermometers for the remote control of the object’s temperature.

References

.
Excitation wavelength dependent emission of silver(i) complexes with a pyrimidine ligand
Shekhovtsov N.A., Vinogradova K.A., Berezin A.S., Sukhikh T.S., Krivopalov V.P., Nikolaenkova E.B., Bushuev M.B.
Inorganic Chemistry Frontiers, 2020
.
Cu(I) complexes – Thermally activated delayed fluorescence. Photophysical approach and material design
Czerwieniec R., Leitl M.J., Homeier H.H., Yersin H.
Coordination Chemistry Reviews, 2016
.
Evaluation of Ligands Effect on the Photophysical Properties of Copper Iodide Clusters.
Huitorel B., El Moll H., Utrera-Melero R., Cordier M., Fargues A., Garcia A., Massuyeau F., Martineau-Corcos C., Fayon F., Rakhmatullin A., Kahlal S., Saillard J., Gacoin T., Perruchas S.
Inorganic Chemistry, 2018
.
Thermochromic luminescence of copper iodide clusters: the case of phosphine ligands.
Perruchas S., Tard C., Le Goff X.F., Fargues A., Garcia A., Kahlal S., Saillard J., Gacoin T., Boilot J.
Inorganic Chemistry, 2011
.
Cu(I) hybrid inorganic–organic materials with intriguing stimuli responsive and optoelectronic properties
Cariati E., Lucenti E., Botta C., Giovanella U., Marinotto D., Righetto S.
Coordination Chemistry Reviews, 2016
.
Combining Theory and Experiment to Get Insight into the Amorphous Phase of Luminescent Mechanochromic Copper Iodide Clusters
Utrera-Melero R., Huitorel B., Cordier M., Mevellec J., Massuyeau F., Latouche C., Martineau-Corcos C., Perruchas S.
Inorganic Chemistry, 2020
.
Copper Iodide Clusters Coordinated by Emissive Cyanobiphenyl-Based Ligands
Utrera-Melero R., Massuyeau F., Latouche C., Camerel F., Perruchas S.
Inorganic Chemistry, 2022
.
Luminescent Cu4I4-cubane clusters based on N-methyl-5,10-dihydrophenarsazines
Galimova M.F., Zueva E.M., Dobrynin A.B., Kolesnikov I.E., Musin R.R., Musina E.I., Karasik A.A.
Dalton Transactions, 2021
.
Water-soluble multimode fluorescent thermometers based on porphyrins photosensitizers
Kolesnikov I.E., Kurochkin M.A., Meshkov I.N., Akasov R.A., Kalinichev A.A., Kolesnikov E.Y., Gorbunova Y.G., Lähderanta E.
Materials and Design, 2021
.
Thermosensitive phosphorus(V) porphyrin: Toward subcellular ratiometric optical temperature sensing
Kolesnikov I.E., Kalinichev A.A., Solomatina A.I., Kurochkin M.A., Meshkov I.N., Kolesnikov E.Y., Gorbunova Y.G.
Sensors and Actuators, A: Physical, 2022
.
Luminescence Mechanochromism Induced by Cluster Isomerization
Huitorel B., El Moll H., Cordier M., Fargues A., Garcia A., Massuyeau F., Martineau-Corcos C., Gacoin T., Perruchas S.
Inorganic Chemistry, 2017
.
Beyond Classical Coordination Chemistry: The First Case of a Triply Bridging Phosphine Ligand
Baranov A.Y., Pritchina E.A., Berezin A.S., Samsonenko D.G., Fedin V.P., Belogorlova N.A., Gritsan N.P., Artem'ev A.V.
Angewandte Chemie - International Edition, 2021
.
Mechanochromic and Thermochromic Luminescence of a Copper Iodide Cluster
Perruchas S., Le Goff X.F., Maron S., Maurin I., Guillen F., Garcia A., Gacoin T., Boilot J.
Journal of the American Chemical Society, 2010
.
Luminescent probes and sensors for temperature
Wang X., Wolfbeis O.S., Meier R.J.
Chemical Society Reviews, 2013
.
Eu-Based Phosphorescence Lifetime Polymer Nanothermometer: A Nanoemulsion Polymerization Approach to Eliminate Quenching of Eu Emission in Aqueous Media
Shakirova J.R., Shevchenko N.N., Baigildin V.A., Chelushkin P.S., Khlebnikov A.F., Tomashenko O.A., Solomatina A.I., Starova G.L., Tunik S.P.
ACS Applied Polymer Materials, 2019
.
Ratiometric thermal sensing based on Eu3+-doped YVO4 nanoparticles
Kolesnikov I.E., Golyeva E.V., Lähderanta E., Kurochkin A.V., Mikhailov M.D.
Journal of Nanoparticle Research, 2016
.
Metal–organic frameworks for luminescence thermometry
Cui Y., Zhu F., Chen B., Qian G.
Chemical Communications, 2015
.
A stoichiometric terbium-europium dyad molecular thermometer: energy transfer properties
Bao G., Wong K., Jin D., Tanner P.A.
Light: Science and Applications, 2018
.
Metal-containing crystalline luminescent thermochromic materials
Li B., Fan H., Zang S., Li H., Wang L.
Coordination Chemistry Reviews, 2018
.
Double Jahn-Teller Distortion in AuGe Complexes Leading to a Dual Blue-Orange Emission.
Bojan R.V., López-de-Luzuriaga J.M., Monge M., Olmos M.E., Echeverría R., Lehtonen O., Sundholm D.
ChemPlusChem, 2015
.
U1 snRNP regulates cancer cell migration and invasion in vitro
Oh J., Venters C.C., Di C., Pinto A.M., Wan L., Younis I., Cai Z., Arai C., So B.R., Duan J., Dreyfuss G.
Nature Communications, 2020
.
High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites
Yakunin S., Benin B.M., Shynkarenko Y., Nazarenko O., Bodnarchuk M.I., Dirin D.N., Hofer C., Cattaneo S., Kovalenko M.V.
Nature Materials, 2019
.
Synthesis, photophysical properties and cation-binding studies of bipyridine-functionalized gold(I) complexes
Solovyev I.V., Kondinski A., Monakhov K.Y., Koshevoy I.O., Grachova E.V.
Inorganic Chemistry Frontiers, 2018
.
Temperature-feedback upconversion nanocomposite for accurate photothermal therapy at facile temperature
Zhu X., Feng W., Chang J., Tan Y., Li J., Chen M., Sun Y., Li F.
Nature Communications, 2016
.
Multimode luminescence thermometry based on emission and excitation spectra
Kolesnikov I.E., Mamonova D.V., Kurochkin M.A., Kolesnikov E.Y., Lähderanta E.
Journal of Luminescence, 2021
.
Geometry flexibility of copper iodide clusters: variability in luminescence thermochromism.
Benito Q., Le Goff X.F., Nocton G., Fargues A., Garcia A., Berhault A., Kahlal S., Saillard J., Martineau C., Trébosc J., Gacoin T., Boilot J., Perruchas S.
Inorganic Chemistry, 2015
.
Luminescent gold(I) complexes for chemosensing
He X., Yam V.W.
Coordination Chemistry Reviews, 2011
.
Applications of gold(i) alkynyl systems: a growing field to explore
Carlos Lima J., Rodríguez L.
Chemical Society Reviews, 2011
.
Siloxanol-functionalized copper iodide cluster as a thermochromic luminescent building block.
Perruchas S., Desboeufs N., Maron S., Le Goff X.F., Fargues A., Garcia A., Gacoin T., Boilot J.
Inorganic Chemistry, 2011
.
Synthesis of dual emitting iodocuprates: can solvents switch the reaction outcome?
Artem'ev A.V., Berezin A.S., Taidakov I.V., Bagryanskaya I.Y.
Inorganic Chemistry Frontiers, 2020
.
Photophysical studies in solution of the tetranuclear copper(I) clusters Cu4I4L4 (L = pyridine or substituted pyridine)
Kyle K.R., Ryu C.K., Ford P.C., DiBenedetto J.A.
Journal of the American Chemical Society, 1991
.
Luminescence thermochromism of acrylic materials incorporating copper iodide clusters
Roppolo I., Celasco E., Fargues A., Garcia A., Revaux A., Dantelle G., Maroun F., Gacoin T., Boilot J., Sangermano M., Perruchas S.
Journal of Materials Chemistry A, 2011
.
Thermochromic Luminescence of Sol−Gel Films Based on Copper Iodide Clusters
Tard C., Perruchas S., Maron S., Le Goff X.F., Guillen F., Garcia A., Vigneron J., Etcheberry A., Gacoin T., Boilot J.
Chemistry of Materials, 2008
.
Photoactive Hybrid Gelators Based on a Luminescent Inorganic [Cu4I4] Cluster Core
Benito Q., Fargues A., Garcia A., Maron S., Gacoin T., Boilot J., Perruchas S., Camerel F.
Chemistry - A European Journal, 2013
.
Binuclear charged copper(I) complex as a multimode luminescence thermal sensor
Kalinichev A.A., Shamsieva A.V., Strelnik I.D., Musina E.I., Lähderanta E., Karasik A.A., Sinyashin O.G., Kolesnikov I.E.
Sensors and Actuators, A: Physical, 2021
.
Deep-Blue Emissive Copper(I) Complexes Based on P-Thiophenylethyl-Substituted Cyclic Bisphosphines Displaying Photoinduced Structural Transformations of the Excited States
Strelnik I.D., Dayanova I., Gerasimova T.P., Katsyuba S.A., Kolesnikov I.E., Kalinichev A., Shmelev A., Islamov D.R., Lönnecke P., Hey-Hawkins E., Musina E.I., Karasik A.A.
Inorganic Chemistry, 2022
.
Fresh Look on the Nature of Dual-Band Emission of Octahedral Copper-Iodide Clusters—Promising Ratiometric Luminescent Thermometers
Shamsieva A.V., Kolesnikov I.E., Strelnik I.D., Gerasimova T.P., Kalinichev A.A., Katsyuba S.A., Musina E.I., Lähderanta E., Karasik A.A., Sinyashin O.G.
Journal of Physical Chemistry C, 2019
.
Synthesis of novel pyridyl containing phospholanes and their polynuclear luminescent copper(i) complexes.
Musina E.I., Shamsieva A.V., Strelnik I.D., Gerasimova T.P., Krivolapov D.B., Kolesnikov I.E., Grachova E.V., Tunik S.P., Bannwarth C., Grimme S., Katsyuba S.A., Karasik A.A., Sinyashin O.G.
Dalton Transactions, 2016
.
The Assembly of Unique Hexanuclear Copper(I) Complexes with Effective White Luminescence.
Strelnik I.D., Dayanova I.R., Kolesnikov I.E., Fayzullin R.R., Litvinov I.A., Samigullina A.I., Gerasimova T.P., Katsyuba S.A., Musina E.I., Karasik A.A.
Inorganic Chemistry, 2019
.
Gold(I) Alkynyls Supported by Mono- and Bidentate NHC Ligands: Luminescence and Isolation of Unprecedented Ionic Complexes
Penney A.A., Starova G.L., Grachova E.V., Sizov V.V., Kinzhalov M.A., Tunik S.P.
Inorganic Chemistry, 2017
.
Family of Robust and Strongly Luminescent CuI-Based Hybrid Networks Made of Ionic and Dative Bonds
Artem’ev A.V., Davydova M.P., Hei X., Rakhmanova M.I., Samsonenko D.G., Bagryanskaya I.Y., Brylev K.A., Fedin V.P., Chen J., Cotlet M., Li J.
Chemistry of Materials, 2020
.
Mechanochromic Luminescence and Liquid Crystallinity of Molecular Copper Clusters
Huitorel B., Benito Q., Fargues A., Garcia A., Gacoin T., Boilot J., Perruchas S., Camerel F.
Chemistry of Materials, 2016
.
Mercaptosilane-Passivated CuInS2 Quantum Dots for Luminescence Thermometry and Luminescent Labels
Marin R., Vivian A., Skripka A., Migliori A., Morandi V., Enrichi F., Vetrone F., Ceroni P., Aprile C., Canton P.
ACS Applied Nano Materials, 2019
.
Mechanochromic Luminescence of Copper Iodide Clusters
Benito Q., Maurin I., Cheisson T., Nocton G., Fargues A., Garcia A., Martineau C., Gacoin T., Boilot J., Perruchas S.
Chemistry - A European Journal, 2015
.
Infrared-Emitting QDs for Thermal Therapy with Real-Time Subcutaneous Temperature Feedback
del Rosal B., Carrasco E., Ren F., Benayas A., Vetrone F., Sanz-Rodríguez F., Ma D., Juarranz Á., Jaque D.
Advanced Functional Materials, 2016
.
Luminescence Thermochromism of Gold(I) Phosphane-Iodide Complexes: A Rule or an Exception?
Glebko N., Dau T.M., Melnikov A.S., Grachova E.V., Solovyev I.V., Belyaev A., Karttunen A.J., Koshevoy I.O.
Chemistry - A European Journal, 2018
.
Synthetic Diversity and Luminescence Properties of ArN(PPh 2 ) 2 ‐Based Copper(I) Complexes
Kathewad N., Pal S., Kumawat R.L., Ehesan Ali M., Khan S.
European Journal of Inorganic Chemistry, 2018
.
Investigation of Luminescent Triplet States in Tetranuclear Cu I Complexes: Thermochromism and Structural Characterization
Boden P., Di Martino‐Fumo P., Busch J.M., Rehak F.R., Steiger S., Fuhr O., Nieger M., Volz D., Klopper W., Bräse S., Gerhards M.
Chemistry - A European Journal, 2021
.
Using cuprophilicity as a multi-responsive chromophore switching color in response to temperature, mechanical force and solvent vapors
.
A novel carbazole-based gold(i) complex with interesting solid-state, multistimuli-responsive characteristics
Chen Z., Liang J., Nie Y., Xu X., Yu G., Yin J., Liu S.H.
Dalton Transactions, 2015
.
Highly efficient ratiometric nanothermometers based on colloidal carbon quantum dots
Han Y., Liu Y., Zhao H., Vomiero A., Li R.
Journal of Materials Chemistry B, 2021
.
Apparent self-heating of individual upconverting nanoparticle thermometers
Pickel A.D., Teitelboim A., Chan E.M., Borys N.J., Schuck P.J., Dames C.
Nature Communications, 2018
.
Emission and Luminescent Vapochromism Control of Octahedral Cu4I4 Complexes by Conformationally Restricted P,N Ligands
Strelnik I., Shamsieva A., Akhmadgaleev K., Gerasimova T., Dayanova I., Kolesnikov I., Fayzullin R., Islamov D., Musina E., Karasik A., Sinyashin O.
Chemistry - A European Journal, 2023
.
Polymeric Nanoparticles with Embedded Eu(III) Complexes as Molecular Probes for Temperature Sensing
Kuznetsov K.M., Baigildin V.A., Solomatina A.I., Galenko E.E., Khlebnikov A.F., Sokolov V.V., Tunik S.P., Shakirova J.R.
Molecules, 2022
.
Luminescence thermometry with transition metal ions. A review
Marciniak L., Kniec K., Elżbieciak-Piecka K., Trejgis K., Stefanska J., Dramićanin M.
Coordination Chemistry Reviews, 2022
.
Highly-sensitive lifetime optical thermometers based on Nd3+, Yb3+:YF3 phosphors
Pudovkin M.S., Ginkel A.K., Morozov O.A., Kiiamov A.G., Kuznetsov M.D.
Journal of Luminescence, 2022
.
Synthesis, structure, and luminescence of the “octahedral” cluster Cu4I4(rac-IsMePCH2PMeIs)2 (Is=2,4,6-(i-Pr)3C6H2)
Emerson E.W., Cain M.F., Sanderson M.D., Knarr C.B., Glueck D.S., Ahern J.C., Patterson H.E., Rheingold A.L.
Inorganica Chimica Acta, 2015
.
A family of CuI-based 1D polymers showing colorful short-lived TADF and phosphorescence induced by photo- and X-ray irradiation
Artem'ev A., Doronina E.P., Rakhmanova M.I., Hei X., Stass D.V., Tarasova O., Bagryanskaya I.Y., Samsonenko D.G., Novikov A.S., Nedolya N., Li J.
Dalton Transactions, 2023
.
Critical Evaluation of the Thermometric Performance of Ratiometric Luminescence Thermometers based on Ba3(VO4)2:Mn5+, Nd3+ for Deep-Tissue Thermal Imaging
Piotrowski W., Marin R., Szymczak M., Martín Rodríguez E., Ortgies D.H., Rodriguez P., Bolek P., Dramićanin M.D., Jaque Garcia D., Marciniak L.
Journal of Materials Chemistry C, 2023
.
Demyanov Y.V., Rakhmanova M.I., Bagryanskaya I.Y., Artem'ev A.V.
Mendeleev Communications, 2023
.
Cubane Dimerization: Cu4 vs Cu8 Copper Iodide Clusters
Utrera-Melero R., Cordier M., Massuyeau F., Mevellec J., Rakhmatullin A., Martineau-Corcos C., Latouche C., Perruchas S.
Inorganic Chemistry, 2023