Home / Publications / 7-Benzyl-1,5-dimethyl-3-piperonyloyl-3,7-diazabicyclo[3.3.1]nonan-9-one as an allosteric modulator of glutamatergic system

7-Benzyl-1,5-dimethyl-3-piperonyloyl-3,7-diazabicyclo[3.3.1]nonan-9-one as an allosteric modulator of glutamatergic system

Elena Andreevna Golubeva 1
Elena Andreevna Golubeva
Mstislav Igorevich Lavrov 1
Mstislav Igorevich Lavrov
Eugene V Radchenko 1
Eugene V Radchenko
Vladimir Lollievich Zamoyski 3
Vladimir Lollievich Zamoyski
Vladimir Viktorovich Grigoriev 1, 3
Vladimir Viktorovich Grigoriev
Vladimir Alexandrovich Palyulin 1
Vladimir Alexandrovich Palyulin
1 Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
2 A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
3 Institute of Physiologically Active Compounds, Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation
Published 2024-04-22
CommunicationVolume 34, Issue 3, 354-356
2
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Matthews J. et al. 7-Benzyl-1,5-dimethyl-3-piperonyloyl-3,7-diazabicyclo[3.3.1]nonan-9-one as an allosteric modulator of glutamatergic system // Mendeleev Communications. 2024. Vol. 34. No. 3. pp. 354-356.
GOST all authors (up to 50) Copy
Matthews J., Veremeeva P. N., Golubeva E. A., Lavrov M. I., Radchenko E. V., Topchiy M. A., Zamoyski V. L., Grigoriev V. V., Palyulin V. A. 7-Benzyl-1,5-dimethyl-3-piperonyloyl-3,7-diazabicyclo[3.3.1]nonan-9-one as an allosteric modulator of glutamatergic system // Mendeleev Communications. 2024. Vol. 34. No. 3. pp. 354-356.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.04.014
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.04.014
TI - 7-Benzyl-1,5-dimethyl-3-piperonyloyl-3,7-diazabicyclo[3.3.1]nonan-9-one as an allosteric modulator of glutamatergic system
T2 - Mendeleev Communications
AU - Matthews, James
AU - Veremeeva, Polina Nikolaevna
AU - Golubeva, Elena Andreevna
AU - Lavrov, Mstislav Igorevich
AU - Radchenko, Eugene V
AU - Topchiy, Maxim Anatol'evich
AU - Zamoyski, Vladimir Lollievich
AU - Grigoriev, Vladimir Viktorovich
AU - Palyulin, Vladimir Alexandrovich
PY - 2024
DA - 2024/04/22
PB - Mendeleev Communications
SP - 354-356
IS - 3
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Matthews,
author = {James Matthews and Polina Nikolaevna Veremeeva and Elena Andreevna Golubeva and Mstislav Igorevich Lavrov and Eugene V Radchenko and Maxim Anatol'evich Topchiy and Vladimir Lollievich Zamoyski and Vladimir Viktorovich Grigoriev and Vladimir Alexandrovich Palyulin},
title = {7-Benzyl-1,5-dimethyl-3-piperonyloyl-3,7-diazabicyclo[3.3.1]nonan-9-one as an allosteric modulator of glutamatergic system},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Apr},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.04.014},
number = {3},
pages = {354--356},
doi = {10.1016/j.mencom.2024.04.014}
}
MLA
Cite this
MLA Copy
Matthews, James, et al. “7-Benzyl-1,5-dimethyl-3-piperonyloyl-3,7-diazabicyclo[3.3.1]nonan-9-one as an allosteric modulator of glutamatergic system.” Mendeleev Communications, vol. 34, no. 3, Apr. 2024, pp. 354-356. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.04.014.

Keywords

3
7-diazabicyclo[3.3.1]nonanes
allosteric modulators
AMPA receptor
PAMs
patch clamp.
piperonylic acid

Abstract

The title compound has been synthesized and assessed in vitro by means of electrophysiological patch clamp technique revealing a positive modulatory effect on the kainate-induced currents in Purkinje neurons in a wide concentration range from 10-12 to 10-6 m. Molecular docking and molecular dynamics simulation revealed a putative binding mode of this compound in the binding site of positive allosteric modulators of AMPA receptors.

References

.
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E.
SoftwareX, 2015
.
CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
Vanommeslaeghe K., Hatcher E., Acharya C., Kundu S., Zhong S., Shim J., Darian E., Guvench O., Lopes P., Vorobyov I., Mackerell A.D.
Journal of Computational Chemistry, 2009
.
Lavrov M.I., Veremeeva P.N., Golubeva E.A., Radchenko E.V., Zamoyski V.L., Grigoriev V.V., Palyulin V.A.
Mendeleev Communications, 2022
.
Quantifying the chemical beauty of drugs
Bickerton G.R., Paolini G.V., Besnard J., Muresan S., Hopkins A.L.
Nature Chemistry, 2012
.
Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information
Sushko I., Novotarskyi S., Körner R., Pandey A.K., Rupp M., Teetz W., Brandmaier S., Abdelaziz A., Prokopenko V.V., Tanchuk V.Y., Todeschini R., Varnek A., Marcou G., Ertl P., Potemkin V., et. al.
Journal of Computer-Aided Molecular Design, 2011
.
Computer-aided estimation of the hERG-mediated cardiotoxicity risk of potential drug components
Radchenko E.V., Rulev Y.A., Safanyaev A.Y., Palyulin V.A., Zefirov N.S.
Doklady Biochemistry and Biophysics, 2017
.
Prediction of human intestinal absorption of drug compounds
Radchenko E.V., Dyabina A.S., Palyulin V.A., Zefirov N.S.
Russian Chemical Bulletin, 2016
.
Novel Positive Allosteric Modulators of AMPA Receptors Based on 3,7-Diazabicyclo[3.3.1]nonane Scaffold
Lavrov M.I., Karlov D.S., Voronina T.A., Grigoriev V.V., Ustyugov A.A., Bachurin S.O., Palyulin V.A.
Molecular Neurobiology, 2019
.
AMPA Receptors as Therapeutic Targets for Neurological Disorders
Lee K., Goodman L., Fourie C., Schenk S., Leitch B., Montgomery J.M.
Advances in Protein Chemistry and Structural Biology, 2016
.
Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels
Hansen K.B., Wollmuth L.P., Bowie D., Furukawa H., Menniti F.S., Sobolevsky A.I., Swanson G.T., Swanger S.A., Greger I.H., Nakagawa T., McBain C.J., Jayaraman V., Low C., Dell’Acqua M.L., Diamond J.S., et. al.
Pharmacological Reviews, 2021
.
New stereoselective intramolecular redox reaction in the system of 3,7-diazabicyclo[3.3.1]nonan-9-one
Vatsadze S.Z., Tyurin V.S., Zatsman A.I., Manaenkova M.A., Semashko V.S., Krut’ko D.P., Zyk N.V., Churakov A.V., Kuz’mina L.G.
Russian Journal of Organic Chemistry, 2006
.
Heteroadamantanes and their derivatives. 6. Synthesis and mass-spectrometric investigation of 5-mono- and 5,6-disubtituted 6-oxo-1,3-diazaadamantanes
Kuznetsov A.I., Basargin E.B., Moskovkin A.S., Ba M.K., Miroshnichenko I.V., Botnikov M.Y., Unkovskii B.V.
Chemistry of Heterocyclic Compounds, 1985
.
Pharmacological characterisation of MDI-222, a novel AMPA receptor positive allosteric modulator with an improved safety profile
Ward S.E., Harries M.H., Aldegheri L., Bradford A.M., Ballini E., Dawson L., Lacroix L., Pardoe J., Starr K., Weil A., Waters K., Atack J.R., Woolley M.
Journal of Psychopharmacology, 2019
.
Challenges and Opportunities in Central Nervous System Drug Discovery
Danon J.J., Reekie T.A., Kassiou M.
Trends in Chemistry, 2019
.
Biology of AMPA receptor interacting proteins - From biogenesis to synaptic plasticity
Matthews P.M., Pinggera A., Kampjut D., Greger I.H.
Neuropharmacology, 2021
.
Golubeva E.A., Lavrov M.I., Veremeeva P.N., Bovina E.M., Radchenko E.V., Topchiy M.A., Asachenko A.F., Zamoyski V.L., Grigoriev V.V., Palyulin V.A.
Mendeleev Communications, 2023
.
New Allosteric Modulators of AMPA Receptors: Synthesis and Study of Their Functional Activity by Radioligand-Receptor Binding Analysis
Golubeva E.A., Lavrov M.I., Veremeeva P.N., Vyunova T.V., Shevchenko K.V., Topchiy M.A., Asachenko A.F., Palyulin V.A.
International Journal of Molecular Sciences, 2023