Home / Publications / Molecular structure-intrinsic photostability relationships for thiophene-benzothiadiazole alternating type conjugated polymers

Molecular structure-intrinsic photostability relationships for thiophene-benzothiadiazole alternating type conjugated polymers

Ekaterina Andreevna Komissarova 1
Ekaterina Andreevna Komissarova
Sergei Alexandrovich Kuklin 1, 2
Sergei Alexandrovich Kuklin
Pavel Anatol'evich Troshin
1 Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation
2 A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Moscow, Russian Federation
3 Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
Published 2024-04-22
CommunicationVolume 34, Issue 3, 338-341
4
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Kuznetsov P. M. et al. Molecular structure-intrinsic photostability relationships for thiophene-benzothiadiazole alternating type conjugated polymers // Mendeleev Communications. 2024. Vol. 34. No. 3. pp. 338-341.
GOST all authors (up to 50) Copy
Kuznetsov P. M., Komissarova E. A., Kuklin S. A., Troshin P. A. Molecular structure-intrinsic photostability relationships for thiophene-benzothiadiazole alternating type conjugated polymers // Mendeleev Communications. 2024. Vol. 34. No. 3. pp. 338-341.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.04.009
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.04.009
TI - Molecular structure-intrinsic photostability relationships for thiophene-benzothiadiazole alternating type conjugated polymers
T2 - Mendeleev Communications
AU - Kuznetsov, Petr Mikhailovich
AU - Komissarova, Ekaterina Andreevna
AU - Kuklin, Sergei Alexandrovich
AU - Troshin, Pavel Anatol'evich
PY - 2024
DA - 2024/04/22
PB - Mendeleev Communications
SP - 338-341
IS - 3
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Kuznetsov,
author = {Petr Mikhailovich Kuznetsov and Ekaterina Andreevna Komissarova and Sergei Alexandrovich Kuklin and Pavel Anatol'evich Troshin},
title = {Molecular structure-intrinsic photostability relationships for thiophene-benzothiadiazole alternating type conjugated polymers},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Apr},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.04.009},
number = {3},
pages = {338--341},
doi = {10.1016/j.mencom.2024.04.009}
}
MLA
Cite this
MLA Copy
Kuznetsov, Petr Mikhailovich, et al. “Molecular structure-intrinsic photostability relationships for thiophene-benzothiadiazole alternating type conjugated polymers.” Mendeleev Communications, vol. 34, no. 3, Apr. 2024, pp. 338-341. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.04.009.

Keywords

conjugated polymers
organic solar cells
photochemical degradation.
photostability

Abstract

A systematic study of the UV light-induced degradation of a series of structurally similar conjugated polymers revealed important relationships between the molecular structure of the used building blocks and photostability of the resulting materials. These findings form a set of important guidelines for future rational design of new absorber materials for efficient and stable organic solar cells.

References

.
Impedance Measurements as a Simple Tool to Control the Quality of Conjugated Polymers Designed for Photovoltaic Applications
Troshin P.A., Susarova D.K., Moskvin Y.L., Kuznetsov I.E., Ponomarenko S.A., Myshkovskaya E.N., Zakharcheva K.A., Balakai A.A., Babenko S.D., Razumov V.F.
Advanced Functional Materials, 2010
.
Kuznetsov P.M., Kuznetsov I.E., Klimovich I.V., Troshin P.A., Akkuratov A.V.
Mendeleev Communications, 2021
.
Kuklin S.A., Safronov S.V., Fedorovskii O.Y., Khakina E.A., Kulik L.V., Utkin D.E., Frolova L.A., Troshin P.A., Khokhlov A.R.
Mendeleev Communications, 2023
.
Light-induced generation of free radicals by fullerene derivatives: an important degradation pathway in organic photovoltaics?
Inasaridze L.N., Shames A.I., Martynov I.V., Li B., Mumyatov A.V., Susarova D.K., Katz E.A., Troshin P.A.
Journal of Materials Chemistry A, 2017
.
Solar cell efficiency tables (version 48)
Green M.A., Emery K., Hishikawa Y., Warta W., Dunlop E.D.
Progress in Photovoltaics: Research and Applications, 2016
.
Minimal Long-Term Intrinsic Degradation Observed in a Polymer Solar Cell Illuminated in an Oxygen-Free Environment
Mateker W.R., Sachs-Quintana I.T., Burkhard G.F., Cheacharoen R., McGehee M.D.
Chemistry of Materials, 2015
.
Organic Solar Cells—The Path to Commercial Success
Riede M., Spoltore D., Leo K.
Advanced Energy Materials, 2020
.
What is Killing Organic Photovoltaics: Light‐Induced Crosslinking as a General Degradation Pathway of Organic Conjugated Molecules
Yamilova O.R., Martynov I.V., Brandvold A.S., Klimovich I.V., Balzer A.H., Akkuratov A.V., Kusnetsov I.E., Stingelin N., Troshin P.A.
Advanced Energy Materials, 2020
.
The Effect of PCBM Dimerization on the Performance of Bulk Heterojunction Solar Cells
Distler A., Sauermann T., Egelhaaf H., Rodman S., Waller D., Cheon K., Lee M., Guldi D.M.
Advanced Energy Materials, 2013
.
Recent advances in stability of organic solar cells
Xu X., Li D., Yuan J., Zhou Y., Zou Y.
EnergyChem, 2021
.
Progress in Stability of Organic Solar Cells
Duan L., Uddin A.
Advanced Science, 2020
.
Conducting Polymers for Optoelectronic Devices and Organic Solar Cells: A Review
R. Murad A., Iraqi A., Aziz S.B., N. Abdullah S., Brza M.A.
Polymers, 2020
.
Understanding the Charge Transfer State and Energy Loss Trade-offs in Non-fullerene-Based Organic Solar Cells
Dela Peña T.A., Khan J.I., Chaturvedi N., Ma R., Xing Z., Gorenflot J., Sharma A., Ng F.L., Baran D., Yan H., Laquai F., Wong K.S.
ACS Energy Letters, 2021
.
Photo-degradation of high efficiency fullerene-free polymer solar cells
Upama M.B., Wright M., Mahmud M.A., Elumalai N.K., Mahboubi Soufiani A., Wang D., Xu C., Uddin A.
Nanoscale, 2017
.
n-Type organic semiconducting polymers: stability limitations, design considerations and applications
Griggs S., Marks A., Bristow H., McCulloch I.
Journal of Materials Chemistry C, 2021
.
Molecular insights of exceptionally photostable electron acceptors for organic photovoltaics
Liu Z., Yu Z., Shen Z., He C., Lau T., Chen Z., Zhu H., Lu X., Xie Z., Chen H., Li C.
Nature Communications, 2021
.
Large-area flexible organic solar cells
Yang F., Huang Y., Li Y., Li Y.
npj Flexible Electronics, 2021
.
Molecular structure – intrinsic photostability relationships for diketopyrrolopyrrole-based conjugated polymers
Kuznetsov P., Martynov I., Zhidkov I.S., Gutsev L.G., Khakina E., Zakharchenko E.N., Slesarenko N.A., Kukharenko A.I., Troshin P.
Journal of Materials Chemistry A, 2023
.
Efficient and air-stable n-type doping in organic semiconductors
Yuan D., Liu W., Zhu X.
Chemical Society Reviews, 2023
.
Molecular Structure–Intrinsic Photostability Relationships for a Series of Conjugated Polymers: Backbone Substitution Matters!
Kuznetsov P.M., Martynov I.V., Zhidkov I.S., Gutsev L.G., Komissarova E.A., Maskaev A.V., Kukharenko A.I., Prudnov F.A., Troshin P.A.
Journal of Physical Chemistry B, 2023
.
Key molecular perspectives for high stability in organic photovoltaics
Luke J., Yang E.J., Labanti C., Park S.Y., Kim J.
Nature Reviews Materials, 2023
.
Strain Control of Mixed‐Halide Wide‐Bandgap Perovskites for Highly Efficient and Stable Solar Cells
Li Z., Li X., Feng X., Chen X., Chen J., Cui X., La S., Yuan Z., Zhang Z., Wang X., Pan J., Liu X., Dai S., Cai M.
Solar RRL, 2023