Home / Publications / Low-temperature synthesis in the dittmarite–sodium acetate trihydrate system: electrochemical activity of M3+/M2+ redox couples in AMPO4 (A = Na, Li; M = Mn, Mn/Fe)

Low-temperature synthesis in the dittmarite–sodium acetate trihydrate system: electrochemical activity of M3+/M2+ redox couples in AMPO4 (A = Na, Li; M = Mn, Mn/Fe)

Aleksandr Shailovich Samarin 1
Aleksandr Shailovich Samarin
Tatiana Vital'evna Ivanova 1, 2
Tatiana Vital'evna Ivanova
Eugene Evgen'evich Nazarov 1
Eugene Evgen'evich Nazarov
Nikita Dmitrievich Luchinin 1
Nikita Dmitrievich Luchinin
Evgenii Viktorovich Antipov 1, 3
Evgenii Viktorovich Antipov
2 D.Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
3 Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
Published 2024-02-19
CommunicationVolume 34, Issue 2, 242-245
1
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Samarin A. S. et al. Low-temperature synthesis in the dittmarite–sodium acetate trihydrate system: electrochemical activity of M3+/M2+ redox couples in AMPO4 (A = Na, Li; M = Mn, Mn/Fe) // Mendeleev Communications. 2024. Vol. 34. No. 2. pp. 242-245.
GOST all authors (up to 50) Copy
Samarin A. S., Ivanova T. V., Nazarov E. E., Marshenya S. N., Luchinin N. D., Antipov E. V., Fedotov S. S. Low-temperature synthesis in the dittmarite–sodium acetate trihydrate system: electrochemical activity of M3+/M2+ redox couples in AMPO4 (A = Na, Li; M = Mn, Mn/Fe) // Mendeleev Communications. 2024. Vol. 34. No. 2. pp. 242-245.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.02.027
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.02.027
TI - Low-temperature synthesis in the dittmarite–sodium acetate trihydrate system: electrochemical activity of M3+/M2+ redox couples in AMPO4 (A = Na, Li; M = Mn, Mn/Fe)
T2 - Mendeleev Communications
AU - Samarin, Aleksandr Shailovich
AU - Ivanova, Tatiana Vital'evna
AU - Nazarov, Eugene Evgen'evich
AU - Marshenya, Sergey Nikolaevich
AU - Luchinin, Nikita Dmitrievich
AU - Antipov, Evgenii Viktorovich
AU - Fedotov, Stanislav Sergeyevich
PY - 2024
DA - 2024/02/19
PB - Mendeleev Communications
SP - 242-245
IS - 2
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2024_Samarin,
author = {Aleksandr Shailovich Samarin and Tatiana Vital'evna Ivanova and Eugene Evgen'evich Nazarov and Sergey Nikolaevich Marshenya and Nikita Dmitrievich Luchinin and Evgenii Viktorovich Antipov and Stanislav Sergeyevich Fedotov},
title = {Low-temperature synthesis in the dittmarite–sodium acetate trihydrate system: electrochemical activity of M3+/M2+ redox couples in AMPO4 (A = Na, Li; M = Mn, Mn/Fe)},
journal = {Mendeleev Communications},
year = {2024},
volume = {34},
publisher = {Mendeleev Communications},
month = {Feb},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.02.027},
number = {2},
pages = {242--245},
doi = {10.1016/j.mencom.2024.02.027}
}
MLA
Cite this
MLA Copy
Samarin, Aleksandr Shailovich, et al. “Low-temperature synthesis in the dittmarite–sodium acetate trihydrate system: electrochemical activity of M3+/M2+ redox couples in AMPO4 (A = Na, Li; M = Mn, Mn/Fe).” Mendeleev Communications, vol. 34, no. 2, Feb. 2024, pp. 242-245. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.02.027.

Keywords

battery
cathode material
chimie douce
dittmarite
maricite
natrophilite
olivine
topochemical reaction
triphylite

Abstract

Phase-pure NaMPO4 (M = Mn, Mn/Fe; isotypic to triphylite) and Li(Mn/Fe)PO4 were isolated as a result of the low- temperature reaction between NH4MPO4·H2O (M = Mn, Mn/Fe) and AcONa·3H2O or AcOLi, respectively. Electrochemical tests in half-cells revealed that Na-based compounds exhibit poor electrochemical activity vs. metallic Na, while the similarly synthesized Li counterpart demonstrates decent cycling in Na cells. The synthetic features, crystal structures and properties of related members of the olivine family are discussed.

References

1.
Electrochemical properties and evolution of the phase transformation behavior in the NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) cathodes for Na-ion batteries
Zakharkin M.V., Drozhzhin O.A., Ryazantsev S.V., Chernyshov D., Kirsanova M.A., Mikheev I.V., Pazhetnov E.M., Antipov E.V., Stevenson K.J.
Journal of Power Sources, 2020
2.
Exploring the Origin of the Superior Electrochemical Performance of Hydrothermally Prepared Li-Rich Lithium Iron Phosphate Li1+dFe1-dPO4
Drozhzhin O.A., Sobolev A.V., Sumanov V.D., Glazkova I.S., Aksyonov D.A., Grebenshchikova A.D., Tyablikov O.A., Alekseeva A.M., Mikheev I.V., Dovgaliuk I., Chernyshov D., Stevenson K.J., Presniakov I.A., Abakumov A.M., Antipov E.V., et. al.
Journal of Physical Chemistry C, 2019
3.
"hydrotriphylites" Li1- xFe1+ x(PO4)1-y(OH)4 y as Cathode Materials for Li-ion Batteries
Sumanov V.D., Aksyonov D.A., Drozhzhin O.A., Presniakov I., Sobolev A.V., Glazkova I., Tsirlin A.A., Rupasov D., Senyshyn A., Kolesnik I.V., Stevenson K.J., Antipov E., Abakumov A.M.
Chemistry of Materials, 2019
4.
Enhancing Na+ Extraction Limit through High Voltage Activation of the NASICON-Type Na4MnV(PO4)3 Cathode
Zakharkin M.V., Drozhzhin O.A., Tereshchenko I.V., Chernyshov D., Abakumov A.M., Antipov E.V., Stevenson K.J.
ACS Applied Energy Materials, 2018
5.
KTiOPO4-structured electrode materials for metal-ion batteries: A review
Fedotov S.S., Samarin A.S., Antipov E.V.
Journal of Power Sources, 2020
6.
Solid state chemistry for developing better metal-ion batteries
Abakumov A.M., Fedotov S.S., Antipov E.V., Tarascon J.
Nature Communications, 2020
9.
Hydroxyl Defects in LiFePO4 Cathode Material: DFT+U and an Experimental Study
Aksyonov D.A., Varlamova I., Trussov I.A., Savina A.A., Senyshyn A., Stevenson K.J., Abakumov A.M., Zhugayevych A., Fedotov S.S.
Inorganic Chemistry, 2021
11.
Topochemical Synthesis of Sodium Metal Phosphate Olivines for Sodium-Ion Batteries
Lee K.T., Ramesh T.N., Nan F., Botton G., Nazar L.F.
Chemistry of Materials, 2011
12.
Crystal structure of a new polymorphic modification of niahite, NH4MnPO4 · H2O
Kiriukhina G.V., Yakubovich O.V., Dimitrova O.V.
Crystallography Reports, 2015
14.
Platelike LiMPO4 (M = Fe, Mn, Co, Ni) for Possible Application in Rechargeable Li Ion Batteries: Beyond Nanosize
Alyoshin V.A., Pleshakov E.A., Ehrenberg H., Mikhailova D.
Journal of Physical Chemistry C, 2014
15.
Structure and electrochemistry of NaFePO 4 and Na 2 FePO 4 F cathode materials prepared via mechanochemical route
Kosova N.V., Podugolnikov V.R., Devyatkina E.T., Slobodyuk A.B.
Materials Research Bulletin, 2014
16.
Multipole analysis of the electron density in triphylite, LiFePO4, using X-ray diffraction data
Streltsov V.A., Belokoneva E.L., Tsirelson V.G., Hansen N.K.
Acta Crystallographica Section B Structural Science, 1993
17.
Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials
Fleischmann S., Mitchell J.B., Wang R., Zhan C., Jiang D., Presser V., Augustyn V.
Chemical Reviews, 2020
18.
Sodium extraction from sodium iron phosphate with a Maricite structure
Prosini P.P., Cento C., Masci A., Carewska M.
Solid State Ionics, 2014
19.
Complete Three-Electron Vanadium Redox in NASICON-Type Na3VSc(PO4)3 Electrode Material for Na-Ion Batteries
Perfilyeva T.I., Drozhzhin O.A., Alekseeva A.M., Zakharkin M.V., Mironov A.V., Mikheev I.V., Bobyleva Z.V., Marenko A.P., Marikutsa A.V., Abakumov A.M., Antipov E.V.
Journal of the Electrochemical Society, 2021
20.
Drastically Enhanced High-Rate Performance of Carbon-Coated LiFePO4 Nanorods Using a Green Chemical Vapor Deposition (CVD) Method for Lithium Ion Battery: A Selective Carbon Coating Process.
Tian R., Liu H., Jiang Y., Chen J., Tan X., Liu G., Zhang L., Gu X., Guo Y., Wang H., Sun L., Chu W.
ACS applied materials & interfaces, 2015
22.
Development of vanadium-based polyanion positive electrode active materials for high-voltage sodium-based batteries
Shraer S.D., Luchinin N.D., Trussov I.A., Aksyonov D.A., Morozov A.V., Ryazantsev S.V., Iarchuk A.R., Morozova P.A., Nikitina V.A., Stevenson K.J., Antipov E.V., Abakumov A.M., Fedotov S.S.
Nature Communications, 2022
23.
Defect and Surface Area Control in Hydrothermally Synthesized LiMn0.8Fe0.2PO4 Using a Phosphate Based Structure Directing Agent
Schoiber J., Tippelt G., Redhammer G.J., Yada C., Dolotko O., Berger R.J., Hüsing N.
Crystal Growth and Design, 2015
24.
Cost-Effective Synthesis of Triphylite-NaFePO4 Cathode: A Zero-Waste Process
Berlanga C., Monterrubio I., Armand M., Rojo T., Galceran M., Casas-Cabanas M.
ACS Sustainable Chemistry and Engineering, 2019
25.
Reducing Transformation Strains during Na Intercalation in Olivine FePO4 Cathodes by Mn Substitution
Henriksen C., Mathiesen J.K., Chiang Y., Jensen K.M., Ravnsbæk D.B.
ACS Applied Energy Materials, 2019
27.
Gradual Development of Maricite NaMnPO4 with the Influence of Diol Chain Length on the Polyol Process of Surpassed Sodium Intercalation
Venkatachalam P., Ganesan S., Rengapillai S., Marimuthu S.
Industrial & Engineering Chemistry Research, 2021
28.
Synthesis of sodium nickel phosphate and its crystallographic, spectroscopic, and temperature-controlled X-ray diffraction study
Korchemkin I.V., Pet’kov I.V., Kurazhkovskaya V.S., Borovikova E.Y.
Russian Journal of Inorganic Chemistry, 2015
29.
Precursor-based methods for low-temperature synthesis of defectless NaMnPO4 with an olivine- and maricite-type structure
Koleva V., Boyadzhieva T., Zhecheva E., Nihtianova D., Simova S., Tyuliev G., Stoyanova R.
CrystEngComm, 2013
30.
Competitive lithium and sodium intercalation into sodium manganese phospho-olivine NaMnPO4 covered with carbon black
Boyadzhieva T., Koleva V., Zhecheva E., Nihtianova D., Mihaylov L., Stoyanova R.
RSC Advances, 2015
31.
Crystal chemistry of Mg substitution in NaMnPO4olivine: concentration limit and cation distribution
Boyadzhieva T., Koleva V., Stoyanova R.
Physical Chemistry Chemical Physics, 2017
32.
Intercalation materials for secondary batteries based on alkali metal exchange: developments and perspectives
Heubner C., Lein T., Schneider M., Michaelis A.
Journal of Materials Chemistry A, 2020
33.
Storage performance of Mg2+ substituted NaMnPO4 with an olivine structure
Boyadzhieva T., Koleva V., Kukeva R., Nihtianova D., Harizanova S., Stoyanova R.
RSC Advances, 2020
34.
Iron oxidation to amplify the Na and Li storage capacities of nano-sized maricite NaFePO4
Boyadzhieva T., Koleva V., Markov P., Stoyanova R.
Dalton Transactions, 2021
35.
Growth and ionic conductivity of Li3 + x P1 − x GexO4 (x = 0.34) single crystals
38.
A Li-rich strategy towards advanced Mn-doped triphylite cathodes for Li-ion batteries
Nazarov E.E., Dembitskiy A.D., Trussov I.A., Tyablikov O.A., Glazkova I.S., Alexey S.V., Presniakov I.A., Mikheev I.V., Morozov A.V., Nikitina V.A., Abakumov A.M., Antipov E.V., Fedotov S.S.
Energy Advances, 2023
41.
Syntheses, crystal structures, optical, Raman spectroscopy, and magnetic properties of two polymorphs of NaMnPO4
Jana S., Lingannan G., Ishtiyak M., Panigrahi G., Sonachalam A., Prakash J.
Materials Research Bulletin, 2020
42.
Polyacrylonitrile-Derived Carbon Nanocoating for Long-Life High-Power Phosphate Electrodes
Nazarov E.E., Tyablikov O.A., Nikitina V.A., Antipov E.V., Fedotov S.S.
Applied Nano, 2023
43.
Communication–Electrochemical Evaluation of MnxFe1-xPO4(0 ≤ x ≤ 1) Cathode Materials for Na-Ion Batteries
Giner M., Roddatis V., López C.M., Kubiak P.
Journal of the Electrochemical Society, 2016
45.
The triphylite NaFe1-yMnyPO4 solid solution (0 ≤ y ≤ 1): Kinetic strain accommodation in NaxFe0.8Mn0.2PO4
Saurel D., Giner M., Galceran M., Rodríguez-Carvajal J., Reynaud M., Casas-Cabanas M.
Electrochimica Acta, 2022
46.
Synthesis of olivine NaMnPO4 single crystals and electrochemical performance as anode material for Li-ion batteries
Pan M., Lu S., Zhang M., Li C., Zou G., Cao K., Fan Y.
Journal of Solid State Chemistry, 2023
47.
Mineral inspired electrode materials for metal-ion batteries
Khasanova N.R., Drozhzhin O.A., Yakubovich O.V., Antipov E.V.
2023
50.
Unravelling the electrochemical activation and the reaction mechanism of maricite-NaFePO4 using multimodal operando techniques
Berlanga C., Sougrati M.T., Fernández-Ropero A.J., Baaboura N., Drewett N.E., Lopez del Amo J.M., Nolis G., Garitaonandia J.S., Reynaud M., Stievano L., Casas-Cabanas M., Galceran M.
Journal of Materials Chemistry A, 2023
51.
Advantages of a Solid Solution over Biphasic Intercalation for Vanadium-Based Polyanion Cathodes in Na-Ion Batteries
Komayko A.I., Shraer S.D., Fedotov S.S., Nikitina V.A.
ACS applied materials & interfaces, 2023