Home / Publications / Modeling of enzyme-catalyzed P–O bond cleavage in the adenosine triphosphate molecule

Modeling of enzyme-catalyzed P–O bond cleavage in the adenosine triphosphate molecule

Mariya Grigor'evna Khrenova
Roman Alekseevich Stepanyuk 1, 2, 3
Roman Alekseevich Stepanyuk
Alexander Vladimirovich Nemukhin
1 Federal Research Centre 'Fundamentals of Biotechnology' of the Russian Academy of Sciences, Moscow, Russian Federation
2 Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
3 N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russian Federation
Published 2023-12-25
Focus articleVolume 34, Issue 1, 1-7
7
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Khrenova M. G. et al. Modeling of enzyme-catalyzed P–O bond cleavage in the adenosine triphosphate molecule // Mendeleev Communications. 2023. Vol. 34. No. 1. pp. 1-7.
GOST all authors (up to 50) Copy
Khrenova M. G., Mulashkina T. I., Stepanyuk R. A., Nemukhin A. V. Modeling of enzyme-catalyzed P–O bond cleavage in the adenosine triphosphate molecule // Mendeleev Communications. 2023. Vol. 34. No. 1. pp. 1-7.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2024.01.001
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.01.001
TI - Modeling of enzyme-catalyzed P–O bond cleavage in the adenosine triphosphate molecule
T2 - Mendeleev Communications
AU - Khrenova, Mariya Grigor'evna
AU - Mulashkina, Tatiana Igorevna
AU - Stepanyuk, Roman Alekseevich
AU - Nemukhin, Alexander Vladimirovich
PY - 2023
DA - 2023/12/25
PB - Mendeleev Communications
SP - 1-7
IS - 1
VL - 34
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Khrenova,
author = {Mariya Grigor'evna Khrenova and Tatiana Igorevna Mulashkina and Roman Alekseevich Stepanyuk and Alexander Vladimirovich Nemukhin},
title = {Modeling of enzyme-catalyzed P–O bond cleavage in the adenosine triphosphate molecule},
journal = {Mendeleev Communications},
year = {2023},
volume = {34},
publisher = {Mendeleev Communications},
month = {Dec},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.01.001},
number = {1},
pages = {1--7},
doi = {10.1016/j.mencom.2024.01.001}
}
MLA
Cite this
MLA Copy
Khrenova, Mariya Grigor'evna, et al. “Modeling of enzyme-catalyzed P–O bond cleavage in the adenosine triphosphate molecule.” Mendeleev Communications, vol. 34, no. 1, Dec. 2023, pp. 1-7. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2024.01.001.
Views / Downloads
2 / 9

Keywords

adenylate cyclases
associative mechanism
ATP
ATPase
dissociative mechanism
molecular dynamics
QM/MM

Abstract

Recent achievements in molecular modeling of reaction mechanisms of the enzymatic ATP conversion to ADP or cAMP are discussed. Both of these reactions are initiated by the nucleophilic attack of an oxygen atom, but the P–O bridging bond cleavage occurs via different mechanisms, dissociative and associative. These mechanisms differ in the order of formation and cleavage of P–O bonds. For ATP ases, the dissociative mechanism is assumed, whereas ATP conversion to the cAMP occurs via associative mechanism. We suggest a novel approach based on the molecular dynamics simulations with combined quantum mechanics/molecular mechanics potentials of the enzyme–substrate complexes that can discriminate dissociative and associative reaction pathways by analysis of length distributions of the cleaving and forming P–O bonds.

References

4.
Modeling reactivation of the phosphorylated human butyrylcholinesterase by QM(DFTB)/MM calculations
Kulakova A., Lushchekina S., Grigorenko B., Nemukhin A.
Journal of Theoretical and Computational Chemistry, 2015
5.
Minimum energy reaction profiles for ATP hydrolysis in myosin
Grigorenko B.L., Kaliman I.A., Nemukhin A.V.
Journal of Molecular Graphics and Modelling, 2011
8.
Mechanism of the myosin catalyzed hydrolysis of ATP as rationalized by molecular modeling
Grigorenko B.L., Rogov A.V., Topol I.A., Burt S.K., Martinez H.M., Nemukhin A.V.
Proceedings of the National Academy of Sciences of the United States of America, 2007
13.
Two-Metal-Ion Catalysis in Adenylyl Cyclase
Tesmer J.J., Sunahara R.K., Johnson R.A., Gosselin G., Gilman A.G., Sprang S.R.
Science, 1999
14.
The Catalytic Mechanism of Mammalian Adenylyl Cyclase
Dessauer C.W., Gilman A.G.
Journal of Biological Chemistry, 1997
15.
Catalytic mechanism of the adenylyl and guanylyl cyclases: Modeling and mutational analysis
Liu Y., Ruoho A.E., Rao V.D., Hurley J.H.
Proceedings of the National Academy of Sciences of the United States of America, 1997
18.
Reaction Dynamics of ATP Hydrolysis in Actin Determined by ab Initio Molecular Dynamics Simulations
Freedman H., Laino T., Curioni A.
Journal of Chemical Theory and Computation, 2012
20.
Theoretical Studies of the ATP Hydrolysis Mechanism of Myosin
Okimoto N., Yamanaka K., Ueno J., Hata M., Hoshino T., Tsuda M.
Biophysical Journal, 2001
22.
Myosin-catalyzed ATP hydrolysis elucidated by 31P NMR kinetic studies and 1H PFG-diffusion measurements
Song Z., Parker K.J., Enoh I., Zhao H., Olubajo O.
Analytical and Bioanalytical Chemistry, 2009
23.
Nonlinear partial differential equations and applications: Early stages of energy transduction by myosin: Roles of Arg in Switch I, of Glu in Switch II, and of the salt-bridge between them
24.
On the Myosin Catalysis of ATP Hydrolysis
Onishi H., Mochizuki N., Morales M.F.
Biochemistry, 2004
25.
Molecular Mechanism of ATP Hydrolysis in F1-ATPase Revealed by Molecular Simulations and Single-Molecule Observations
Hayashi S., Ueno H., Shaikh A.R., Umemura M., Kamiya M., Ito Y., Ikeguchi M., Komoriya Y., Iino R., Noji H.
Journal of the American Chemical Society, 2012
27.
Catalytic strategy used by the myosin motor to hydrolyze ATP
Kiani F.A., Fischer S.
Proceedings of the National Academy of Sciences of the United States of America, 2014
28.
Structure at 2.8 Â resolution of F1-ATPase from bovine heart mitochondria
Abrahams J.P., Leslie A.G., Lutter R., Walker J.E.
Nature, 1994
33.
Pathway of ATP Hydrolysis by Monomeric Kinesin Eg5
Cochran J.C., Krzysiak T.C., Gilbert S.P.
Biochemistry, 2006
37.
Unraveling the Mystery of ATP Hydrolysis in Actin Filaments
McCullagh M., Saunders M.G., Voth G.A.
Journal of the American Chemical Society, 2014
38.
Challenges and advances in the computational modeling of biological phosphate hydrolysis
Petrović D., Szeler K., Kamerlin S.C.
Chemical Communications, 2018
39.
Actin Binding Proteins: Regulation of Cytoskeletal Microfilaments
Dos Remedios C.G., Chhabra D., Kekic M., Dedova I.V., Tsubakihara M., Berry D.A., Nosworthy N.J.
Physiological Reviews, 2003
40.
Physiological roles of mammalian transmembrane adenylyl cyclase isoforms
Ostrom K.F., LaVigne J.E., Brust T.F., Seifert R., Dessauer C.W., Watts V.J., Ostrom R.S.
Physiological Reviews, 2022
41.
Structure of the actin-myosin complex and its implications for muscle contraction
Rayment I., Holden H., Whittaker M., Yohn C., Lorenz M., Holmes K., Milligan R.
Science, 1993
42.
Structures and mechanisms of actin ATP hydrolysis
Kanematsu Y., Narita A., Oda T., Koike R., Ota M., Takano Y., Moritsugu K., Fujiwara I., Tanaka K., Komatsu H., Nagae T., Watanabe N., Iwasa M., Maéda Y., Takeda S., et. al.
Proceedings of the National Academy of Sciences of the United States of America, 2022
43.
Phosphate release in F1-ATPase catalytic cycle follows ADP release
Watanabe R., Iino R., Noji H.
Nature Chemical Biology, 2010
44.
ATP synthesis and storage
Bonora M., Patergnani S., Rimessi A., De Marchi E., Suski J.M., Bononi A., Giorgi C., Marchi S., Missiroli S., Poletti F., Wieckowski M.R., Pinton P.
Purinergic Signalling, 2012
45.
Zooming in on ATP Hydrolysis in F1
Dittrich M., Schulten K.
Journal of Bioenergetics and Biomembranes, 2005
46.
Catalytic mechanism of F1-ATPase.
Weber J., Senior A.E.
Biochimica et Biophysica Acta - Bioenergetics, 1997
49.
50.
Advances in quantum simulations of ATPase catalysis in the myosin motor
Kiani F.A., Fischer S.
Current Opinion in Structural Biology, 2015
52.
Crystal Structures of Expressed Non-polymerizable Monomeric Actin in the ADP and ATP States
Rould M.A., Wan Q., Joel P.B., Lowey S., Trybus K.M.
Journal of Biological Chemistry, 2006
53.
The Conserved Asparagine and Arginine Are Essential for Catalysis of Mammalian Adenylyl Cyclase
54.
On the Mechanism of ATP Hydrolysis in F1-ATPase
Dittrich M., Hayashi S., Schulten K.
Biophysical Journal, 2003
55.
ATP Hydrolysis in the βTP and βDP Catalytic Sites of F1-ATPase
Dittrich M., Hayashi S., Schulten K.
Biophysical Journal, 2004