Home / Publications / NiII and CuII coordination polymers as anode materials and their compatibility with different electrolytes in Li-ion batteries

NiII and CuII coordination polymers as anode materials and their compatibility with different electrolytes in Li-ion batteries

Guzaliya Rafikovna Baymuratova
Ekaterina Andreevna Komissarova 1
Ekaterina Andreevna Komissarova
Galiya Zaynetdinovna Tulibaeva 1
Galiya Zaynetdinovna Tulibaeva
Olga Alexandrovna Kraevaya 1
Olga Alexandrovna Kraevaya
Pavel Anatol'evich Troshin
1 Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow Region, Russian Federation
2 Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou, China
3 Harbin Institute of Technology, Harbin, China
Published 2023-10-18
CommunicationVolume 33, Issue 6, 861-863
3
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Baymuratova G. R. et al. NiII and CuII coordination polymers as anode materials and their compatibility with different electrolytes in Li-ion batteries // Mendeleev Communications. 2023. Vol. 33. No. 6. pp. 861-863.
GOST all authors (up to 50) Copy
Baymuratova G. R., Komissarova E. A., Tulibaeva G. Z., Yarmolenko O. V., Kraevaya O. A., Troshin P. A. NiII and CuII coordination polymers as anode materials and their compatibility with different electrolytes in Li-ion batteries // Mendeleev Communications. 2023. Vol. 33. No. 6. pp. 861-863.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2023.10.041
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.10.041
TI - NiII and CuII coordination polymers as anode materials and their compatibility with different electrolytes in Li-ion batteries
T2 - Mendeleev Communications
AU - Baymuratova, Guzaliya Rafikovna
AU - Komissarova, Ekaterina Andreevna
AU - Tulibaeva, Galiya Zaynetdinovna
AU - Yarmolenko, Ol'ga Viktorovna
AU - Kraevaya, Olga Alexandrovna
AU - Troshin, Pavel Anatol'evich
PY - 2023
DA - 2023/10/18
PB - Mendeleev Communications
SP - 861-863
IS - 6
VL - 33
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Baymuratova,
author = {Guzaliya Rafikovna Baymuratova and Ekaterina Andreevna Komissarova and Galiya Zaynetdinovna Tulibaeva and Ol'ga Viktorovna Yarmolenko and Olga Alexandrovna Kraevaya and Pavel Anatol'evich Troshin},
title = {NiII and CuII coordination polymers as anode materials and their compatibility with different electrolytes in Li-ion batteries},
journal = {Mendeleev Communications},
year = {2023},
volume = {33},
publisher = {Mendeleev Communications},
month = {Oct},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.10.041},
number = {6},
pages = {861--863},
doi = {10.1016/j.mencom.2023.10.041}
}
MLA
Cite this
MLA Copy
Baymuratova, Guzaliya Rafikovna, et al. “NiII and CuII coordination polymers as anode materials and their compatibility with different electrolytes in Li-ion batteries.” Mendeleev Communications, vol. 33, no. 6, Oct. 2023, pp. 861-863. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.10.041.

Keywords

dioxolane.
discharge capacity
in situ polymerized electrolyte
LiPF6
lithium battery
MOF

Abstract

The effect of various types of electrolytes on the operation of coordination polymers based on NiII or CuII in lithium-ion batteries has been examined. Cyclic voltammetry, galvanostatic cycling and quantum chemical modeling have been used to study the processes of lithiation and delithiation. It was shown that the use of a new electrolyte based on a mixture of 1 M LiN(CF3SO2)2 in 1,3-dioxolane-1,2-dimethoxyethane and 1 M LiPF6 in ethylene carbonate-dimethyl carbonate improved battery performance, while cycling in the range of 0.2-2.5 V increased the discharge capacity up to 177-188 mA h g−1 and stabilized the charge-discharge processes.

References

.
Kharissova O.V., Zhinzhilo V.A., Chernomorova M.A., Uflyand I.E., Gómez de la Fuente I., Kharisov B.I.
Mendeleev Communications, 2021
.
Nickel(II) and Copper(II) Coordination Polymers Derived from 1,2,4,5-Tetraaminobenzene for Lithium-Ion Batteries
Kapaev R.R., Olthof S., Zhidkov I.S., Kurmaev E.Z., Stevenson K.J., Meerholz K., Troshin P.A.
Chemistry of Materials, 2019
.
Extendable nickel complex tapes that reach NIR absorptions
Audi H., Chen Z., Charaf-Eddin A., D’Aléo A., Canard G., Jacquemin D., Siri O.
Chemical Communications, 2014
.
Kapaev R.R., Shklyaeva E.V., Abashev G.G., Stevenson K.J., Troshin P.A.
Mendeleev Communications, 2022
.
Nanostructured Metal-Organic Conjugated Coordination Polymers with Ligand Tailoring for Superior Rechargeable Energy Storage.
Xie J., Cheng X., Cao X., He J., Guo W., Li D., Xu Z.J., Huang Y., Lu J., Zhang Q.
Small, 2019
.
Metal-Organic Frameworks for Batteries
Zhao R., Liang Z., Zou R., Xu Q.
Joule, 2018
.
Metal–Organic Framework-Based Materials for Energy Conversion and Storage
Qiu T., Liang Z., Guo W., Tabassum H., Gao S., Zou R.
ACS Energy Letters, 2020
.
In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries
Chai J., Liu Z., Ma J., Wang J., Liu X., Liu H., Zhang J., Cui G., Chen L.
Advanced Science, 2016
.
Poly(vinylidene fluoride)-based hybrid gel polymer electrolytes for additive-free lithium sulfur batteries
Gao S., Wang K., Wang R., Jiang M., Han J., Gu T., Cheng S., Jiang K.
Journal of Materials Chemistry A, 2017
.
Novel gel polymer electrolyte for high-performance lithium–sulfur batteries
Liu M., Zhou D., He Y., Fu Y., Qin X., Miao C., Du H., Li B., Yang Q., Lin Z., Zhao T.S., Kang F.
Nano Energy, 2016
.
Recent advances in lithium-based batteries using metal organic frameworks as electrode materials
Jiang Y., Zhao H., Yue L., Liang J., Li T., Liu Q., Luo Y., Kong X., Lu S., Shi X., Zhou K., Sun X.
Electrochemistry Communications, 2021
.
Ni(II) and Cu(II) coordination polymers with rubeanic acid ligands as promising electrode materials for lithium and potassium batteries
Komissarova E.A., Kraevaya O.A., Zhidkov I.S., Kukharenko A.I., Dremova N.N., Baskakova Y.V., Shestakov A.F., Troshin P.A.
Synthetic Metals, 2023