Home / Publications / Single-atom alloy Pd1Ag10/Al2O3 catalyst: Effect of CO-induced Pd surface segregation on the structure and catalytic performance in the hydrogenation of C2H2

Single-atom alloy Pd1Ag10/Al2O3 catalyst: Effect of CO-induced Pd surface segregation on the structure and catalytic performance in the hydrogenation of C2H2

Nadezhda Sergeevna Smirnova 1
Nadezhda Sergeevna Smirnova
Galina Nikolaevna Baeva 1
Galina Nikolaevna Baeva
Andrey Valerievich Bukhtiyarov 2
Andrey Valerievich Bukhtiyarov
Igor Anatolyevich Chetyrin 2
Igor Anatolyevich Chetyrin
Aleksandr Yurevich Stakheev 1
Aleksandr Yurevich Stakheev
2 G.K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
Published 2023-10-18
CommunicationVolume 33, Issue 6, 812-814
6
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Markov P. V. et al. Single-atom alloy Pd1Ag10/Al2O3 catalyst: Effect of CO-induced Pd surface segregation on the structure and catalytic performance in the hydrogenation of C2H2 // Mendeleev Communications. 2023. Vol. 33. No. 6. pp. 812-814.
GOST all authors (up to 50) Copy
Markov P. V., Smirnova N. S., Baeva G. N., Mashkovsky I. S., Bukhtiyarov A. V., Chetyrin I. A., Zubavichus Y. V., Stakheev A. Y. Single-atom alloy Pd1Ag10/Al2O3 catalyst: Effect of CO-induced Pd surface segregation on the structure and catalytic performance in the hydrogenation of C2H2 // Mendeleev Communications. 2023. Vol. 33. No. 6. pp. 812-814.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2023.10.024
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.10.024
TI - Single-atom alloy Pd1Ag10/Al2O3 catalyst: Effect of CO-induced Pd surface segregation on the structure and catalytic performance in the hydrogenation of C2H2
T2 - Mendeleev Communications
AU - Markov, Pavel Viktorovich
AU - Smirnova, Nadezhda Sergeevna
AU - Baeva, Galina Nikolaevna
AU - Mashkovsky, Igor' Sergeevich
AU - Bukhtiyarov, Andrey Valerievich
AU - Chetyrin, Igor Anatolyevich
AU - Zubavichus, Yan Vitautasovich
AU - Stakheev, Aleksandr Yurevich
PY - 2023
DA - 2023/10/18
PB - Mendeleev Communications
SP - 812-814
IS - 6
VL - 33
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Markov,
author = {Pavel Viktorovich Markov and Nadezhda Sergeevna Smirnova and Galina Nikolaevna Baeva and Igor' Sergeevich Mashkovsky and Andrey Valerievich Bukhtiyarov and Igor Anatolyevich Chetyrin and Yan Vitautasovich Zubavichus and Aleksandr Yurevich Stakheev},
title = {Single-atom alloy Pd1Ag10/Al2O3 catalyst: Effect of CO-induced Pd surface segregation on the structure and catalytic performance in the hydrogenation of C2H2},
journal = {Mendeleev Communications},
year = {2023},
volume = {33},
publisher = {Mendeleev Communications},
month = {Oct},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.10.024},
number = {6},
pages = {812--814},
doi = {10.1016/j.mencom.2023.10.024}
}
MLA
Cite this
MLA Copy
Markov, Pavel Viktorovich, et al. “Single-atom alloy Pd1Ag10/Al2O3 catalyst: Effect of CO-induced Pd surface segregation on the structure and catalytic performance in the hydrogenation of C2H2.” Mendeleev Communications, vol. 33, no. 6, Oct. 2023, pp. 812-814. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.10.024.

Keywords

adsorption-induced segregation
CO adsorption
DRIFTS
Pd
selective acetylene hydrogenation
single-atom alloy catalyst
XPS.

Abstract

The effective surface concentration of Pd1 sites composed of individual palladium atoms isolated from each other by Ag atoms in the Pd1Ag10/Al2O3 single-atom alloy (SAA) catalyst can be significantly enhanced by the adsorption-induced surface segregation upon a special pretreatment of the catalyst in a CO-containing atmosphere at 200 °C. The catalyst activity towards acetylene hydrogenation gets tripled without sacrificing selectivity for ethylene. The segregated surface of the catalyst is thus preserved under target reaction conditions.

References

.
Progress in single-atom methodology in modern catalysis
Mashkovsky Igor S., Markov Pavel V., Rassolov Alexander V., Patil Ekaterina D., Stakheev Alexander Yu.
Russian Chemical Reviews, 2023
.
Smirnova N.S., Baeva G.N., Markov P.V., Mashkovsky I.S., Bukhtiyarov A.V., Zubavichus Y.V., Yu. Stakheev A.
Mendeleev Communications, 2022
.
Surface energy and work function of elemental metals
Skriver H.L., Rosengaard N.M.
Physical Review B, 1992
.
Ag Alloyed Pd Single-Atom Catalysts for Efficient Selective Hydrogenation of Acetylene to Ethylene in Excess Ethylene
Pei G.X., Liu X.Y., Wang A., Lee A.F., Isaacs M.A., Li L., Pan X., Yang X., Wang X., Tai Z., Wilson K., Zhang T.
ACS Catalysis, 2015
.
STM study of the (111) and (100) surfaces of PdAg
Wouda P.T., Schmid M., Nieuwenhuys B.E., Varga P.
Surface Science, 1998
.
Liquid-phase acetylene hydrogenation over Ag-modified Pd/Sibunit catalysts: Effect of Pd to Ag molar ratio
Glyzdova D.V., Afonasenko T.N., Khramov E.V., Leont’eva N.N., Prosvirin I.P., Bukhtiyarov A.V., Shlyapin D.A.
Applied Catalysis A: General, 2020
.
Liquid-phase hydrogenation of 1-phenyl-1-propyne on the Pd1Ag3/Al2O3 single-atom alloy catalyst: Kinetic modeling and the reaction mechanism
Rassolov A.V., Mashkovsky I.S., Baeva G.N., Bragina G.O., Smirnova N.S., Markov P.V., Bukhtiyarov A.V., Wärnå J., Stakheev A.Y., Murzin D.Y.
Nanomaterials, 2021
.
Adsorption-Induced Segregation as a Method for the Target-Oriented Modification of the Surface of a Bimetallic Pd–Ag Catalyst
Stakheev A.Y., Smirnova N.S., Markov P.V., Baeva G.N., Bragina G.O., Rassolov A.V., Mashkovsky I.S.
Kinetics and Catalysis, 2018
.
Design of Core-Pd/Shell-Ag Nanocomposite Catalyst for Selective Semihydrogenation of Alkynes
Mitsudome T., Urayama T., Yamazaki K., Maehara Y., Yamasaki J., Gohara K., Maeno Z., Mizugaki T., Jitsukawa K., Kaneda K.
ACS Catalysis, 2015
.
In situ formation of the active sites in Pd-Au bimetallic nanocatalysts for CO oxidation: NAP (near ambient pressure) XPS and MS study.
Bukhtiyarov A.V., Prosvirin I.P., Saraev A.A., Klyushin A.Y., Knop-Gericke A., Bukhtiyarov V.I.
Faraday Discussions, 2018
.
Model Ag/HOPG catalysts: preparation and STM/XPS study
Demidov D.V., Prosvirin I.P., Sorokin A.M., Bukhtiyarov V.I.
Catalysis Science and Technology, 2011
.
Single-Atom Alloy Catalysis.
Hannagan R.T., Giannakakis G., Flytzani-Stephanopoulos M., Sykes E.C.
Chemical Reviews, 2020
.
Dynamics of Surface Alloys: Rearrangement of Pd/Ag(111) Induced by CO and O2
van Spronsen M.A., Daunmu K., O’Connor C.R., Egle T., Kersell H., Oliver-Meseguer J., Salmeron M.B., Madix R.J., Sautet P., Friend C.M.
Journal of Physical Chemistry C, 2018
.
AgPd and CuPd Catalysts for Selective Hydrogenation of Acetylene
Ball M.R., Rivera-Dones K.R., Gilcher E.B., Ausman S.F., Hullfish C.W., Lebrón E.A., Dumesic J.A.
ACS Catalysis, 2020
.
The Progress and Outlook of Metal Single-Atom-Site Catalysis
Liang X., Fu N., Yao S., Li Z., Li Y.
Journal of the American Chemical Society, 2022
.
Single‐Atom Catalysts: A Sustainable Pathway for the Advanced Catalytic Applications
Singh B., Sharma V., Gaikwad R.P., Fornasiero P., Zbořil R., Gawande M.B.
Small, 2021
.
Double-segregation effect inAgxPd1−x∕Ru(0001)thin film nanostructures
Marten T., Hellman O., Ruban A.V., Olovsson W., Kramer C., Godowski J.P., Bech L., Li Z., Onsgaard J., Abrikosov I.A.
Physical Review B, 2008
.
Catalysis of semihydrogenation of acetylene to ethylene: current trends, challenges, and outlook
Shittu T.D., Ayodele O.B.
Frontiers of Chemical Science and Engineering, 2022
.
Fundamental aspects of alkyne semi-hydrogenation over heterogeneous catalysts
Wang Z., Luo Q., Mao S., Wang C., Xiong J., Chen Z., Wang Y.
Nano Research, 2022
.
Creation of Well-Defined Pd Surface Sites on Single Crystal Pd33Ag67: From Ensembles to Single Atoms
Mohrhusen L., Egle T., Lee J.D., Friend C.M., Madix R.J.
Journal of Physical Chemistry C, 2022
.
Boosting the activity of PdAg2/Al2O3 supported catalysts towards the selective acetylene hydrogenation by means of CO-induced segregation: A combined NAP XPS and mass-spectrometry study
Bukhtiyarov A.V., Panafidin M.A., Prosvirin I.P., Mashkovsky I.S., Markov P.V., Rassolov A.V., Smirnova N.S., Baeva G.N., Rameshan C., Rameshan R., Zubavichus Y.V., Bukhtiyarov V.I., Stakheev A.Y.
Applied Surface Science, 2022
.
Shuvalova E.V., Kirichenko O.A.
Mendeleev Communications, 2021
.
The thermodynamic properties of silver + palladium alloys
Chan J.P., Hultgren R.
Journal of Chemical Thermodynamics, 1969
.
Shesterkina A.A., Strekalova A.A., Shuvalova E.V., Kapustin G.I., Tkachenko O.P., Kustov L.M.
Mendeleev Communications, 2022