Home / Publications / DFT study of the stabilization preconditions of the indoline spiropyrans with a cationic substituent

DFT study of the stabilization preconditions of the indoline spiropyrans with a cationic substituent

Vitaliy Viktorovich Koval 1
Vitaliy Viktorovich Koval
Anastasia Sergeevna Kozlenko 1
Anastasia Sergeevna Kozlenko
Boris S Lukyanov 1
Boris S Lukyanov
1 Institute of Physical and Organic Chemistry, Southern Federal University, Rostov-on-Don, Russian Federation
Published 2023-09-01
CommunicationVolume 33, Issue 5, 666-670
2
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Koval V. V., Kozlenko A. S., Lukyanov B. S. DFT study of the stabilization preconditions of the indoline spiropyrans with a cationic substituent // Mendeleev Communications. 2023. Vol. 33. No. 5. pp. 666-670.
GOST all authors (up to 50) Copy
Koval V. V., Kozlenko A. S., Lukyanov B. S. DFT study of the stabilization preconditions of the indoline spiropyrans with a cationic substituent // Mendeleev Communications. 2023. Vol. 33. No. 5. pp. 666-670.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2023.09.024
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.09.024
TI - DFT study of the stabilization preconditions of the indoline spiropyrans with a cationic substituent
T2 - Mendeleev Communications
AU - Koval, Vitaliy Viktorovich
AU - Kozlenko, Anastasia Sergeevna
AU - Lukyanov, Boris S
PY - 2023
DA - 2023/09/01
PB - Mendeleev Communications
SP - 666-670
IS - 5
VL - 33
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Koval,
author = {Vitaliy Viktorovich Koval and Anastasia Sergeevna Kozlenko and Boris S Lukyanov},
title = {DFT study of the stabilization preconditions of the indoline spiropyrans with a cationic substituent},
journal = {Mendeleev Communications},
year = {2023},
volume = {33},
publisher = {Mendeleev Communications},
month = {Sep},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.09.024},
number = {5},
pages = {666--670},
doi = {10.1016/j.mencom.2023.09.024}
}
MLA
Cite this
MLA Copy
Koval, Vitaliy Viktorovich, et al. “DFT study of the stabilization preconditions of the indoline spiropyrans with a cationic substituent.” Mendeleev Communications, vol. 33, no. 5, Sep. 2023, pp. 666-670. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.09.024.

Keywords

charges
chemical bonds
chromenes.
density functional calculations
indolium
merocyanine
NBO theory
solvent effect
spiropyrans

Abstract

The computational modeling results are presented in the defining points of the isomerization process of the spiropyrans with cationic vinyl-3H-indolium substituent in the positions 6' and 8' of the 2H-chromene moiety taking into account DMSO solvent. The role of effective conjugation is revealed, that determines the significant difference in the behavior of the studied systems, based on the data of NBO energetic analysis and the atomic charge transfer analysis. The model shows that the interaction between an anion and a cation in these compounds has predominantly electrostatic nature without chemical bonds in the NBO terms

References

.
Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions
Krishnan R., Binkley J.S., Seeger R., Pople J.A.
Journal of Chemical Physics, 1980
.
Quantum Mechanical Continuum Solvation Models
Tomasi J., Mennucci B., Cammi R.
Chemical Reviews, 2005
.
Energy barrier to TTC–TTT isomerisation for the merocyanine of a photochromic spiropyran
.
Ciprofloxacin-Photoswitch Conjugates: A Facile Strategy for Photopharmacology.
Velema W.A., Hansen M.J., Lerch M.M., Driessen A.J., Szymanski W., Feringa B.L.
Bioconjugate Chemistry, 2015
.
Spiropyran-based dynamic materials.
Klajn R.
Chemical Society Reviews, 2014
.
Spectroscopic and Theoretical Evidence for the Elusive Intermediate of the Photoinitiated and Thermal Rearrangements of Photochromic Spiropyrans
Minkin V.I., Metelitsa A.V., Dorogan I.V., Lukyanov B.S., Besugliy S.O., Micheau J.
Journal of Physical Chemistry A, 2005
.
Comparative Evaluation of Substituent Effect on the Photochromic Properties of Spiropyrans and Spirooxazines
Balmond E.I., Tautges B.K., Faulkner A.L., Or V.W., Hodur B.M., Shaw J.T., Louie A.Y.
Journal of Organic Chemistry, 2016
.
Investigating the Photochemistry of Spiropyran Metal Complexes with Online LED-NMR
Feuerstein T.J., Müller R., Barner-Kowollik C., Roesky P.W.
Inorganic Chemistry, 2019
.
Multidimensional Electronic Spectroscopy of Photochemical Reactions
Nuernberger P., Ruetzel S., Brixner T.
Angewandte Chemie - International Edition, 2015
.
Quantum Chemical Study of Structure and Energetical Characteristics of Spiropyrans Containing Cationic 3H-Indolium Fragment
Koval V.V., Kozlenko А.S., Minkin V.I., Lukyanov B.S.
Russian Journal of General Chemistry, 2021
.
The balance between closed and open forms of spiropyrans in the solid state
Aakeröy C.B., Hurley E.P., Desper J., Natali M., Douglawi A., Giordani S.
CrystEngComm, 2010
.
A study of the spiropyran–merocyanine system using ion mobility-mass spectrometry: experimental support for the cisoid conformation
Rogers R.A., Rodier A.R., Stanley J.A., Douglas N.A., Li X., Brittain W.J.
Chemical Communications, 2014
.
A spiropyran–coumarin platform: an environment sensitive photoresponsive drug delivery system for efficient cancer therapy
Barman S., Das J., Biswas S., Maiti T.K., Pradeep Singh N.D.
Journal of Materials Chemistry B, 2017
.
Spiropyrans for light-controlled drug delivery
Cardano F., Del Canto E., Giordani S.
Dalton Transactions, 2019
.
The photo-/thermo-chromism of spiropyran in alkanes as a temperature abuse indicator in the cold chain of vaccines
.
Proton exchange and isomerisation reactions of photochromic and reverse photochromic spiro-pyrans and their merocyanine forms
Hobley J., Malatesta V., Millini R., Montanari L., O Neil Parker, Jr W.
Physical Chemistry Chemical Physics, 1999
.
Structure Investigation of New Condensation Products of 1,2,3,3-Tetramethylindolenium with Metoxysubstituted Diformylphenols
Lukyanova M.B., Tkachev V.V., Lukyanov B.S., Pugachev A.D., Ozhogin I.V., Komissarova O.A., Aldoshin S.M., Minkin V.I.
Journal of Structural Chemistry, 2018
.
Specific detection of hypochlorite: a cyanine based turn-on fluorescent sensor
Samanta S., Halder S., Manna U., Das G.
Journal of Chemical Sciences, 2019
.
Koval V.V., Kozlenko A.S., Minkin V.I., El-Sewify I.M., Lukyanov B.S.
Mendeleev Communications, 2022
.
Novel polychromogenic fluorine-substituted spiropyrans demonstrating either uni- or bidirectional photochromism as multipurpose molecular switches
Pugachev A.D., Ozhogin I.V., Makarova N.I., Rostovtseva I.A., Lukyanova M.B., Kozlenko A.S., Borodkin G.S., Tkachev V.V., El-Sewify I.M., Dorogan I.V., Metelitsa A.V., Aldoshin S.M., Lukyanov B.S.
Dyes and Pigments, 2022
.
Kozlenko A.S., Makarova N.I., Ozhogin I.V., Pugachev A.D., Lukyanova M.B., Rostovtseva I.A., Borodkin G.S., Stankevich N.V., Metelitsa A.V., Lukyanov B.S.
Mendeleev Communications, 2021
.
Synthesis, structure and photochromic properties of indoline spiropyrans with electron-withdrawing substituents
Pugachev A.D., Ozhogin I.V., Lukyanova M.B., Lukyanov B.S., Kozlenko A.S., Rostovtseva I.A., Makarova N.I., Tkachev V.V., Aldoshin S.M., Metelitsa A.V.
Journal of Molecular Structure, 2021
.
Theoretical study of spiropyran–merocyanine thermal isomerization
Cottone G., Noto R., La Manna G.
Chemical Physics Letters, 2004
.
Synthesis, optical properties and in vitro cell viability of novel spiropyrans and their photostationary states
Rastogi S.K., Zhao Z., Gildner M.B., Shoulders B.A., Velasquez T.L., Blumenthal M.O., Wang L., Li X., Hudnall T.W., Betancourt T., Du L., Brittain W.J.
Tetrahedron, 2021
.
Semipermanent merocyanines of spirocyclic compounds: Photochromic “balance”
Metelitsa A., Chernyshev A., Voloshin N., Solov'eva E., Rostovtseva I., Dorogan I., Gaeva E., Guseva A.
Dyes and Pigments, 2021
.
Chromogenic systems based on 8-(1,3-benzoxazol-2-yl) substituted spirobenzopyrans undergoing ion modulated photochromic rearrangements
Chernyshev A.V., Metelitsa A.V., Rostovtseva I.A., Voloshin N.A., Solov’eva E.V., Gaeva E.B., Minkin V.I.
Journal of Photochemistry and Photobiology A: Chemistry, 2018
.
A substituted spiropyran for highly sensitive and selective colorimetric detection of cyanide ions
Prakash K., Ranjan Sahoo P., Kumar S.
Sensors and Actuators, B: Chemical, 2016