Home / Publications / An expedient cyclization of polyfunctional (aryl)(pyrimidinyl)(pyranyl)methanes into spiro[furo[3,2-c]pyran-2,5’-pyrimidine] scaffold

An expedient cyclization of polyfunctional (aryl)(pyrimidinyl)(pyranyl)methanes into spiro[furo[3,2-c]pyran-2,5’-pyrimidine] scaffold

Anatoly Nikolaevich Vereshchagin 2
Anatoly Nikolaevich Vereshchagin
Yuliya Evgenievna Ryzhkova 1
Yuliya Evgenievna Ryzhkova
Kirill Anatol'evich Karpenko 1
Kirill Anatol'evich Karpenko
Varvara Mikhailovna Kalashnikova 1, 2
Varvara Mikhailovna Kalashnikova
Mikhail Petrovich Egorov 1
Mikhail Petrovich Egorov
2 D.Mendeleev University of Chemical Technology of Russia, Moscow, Russian Federation
Published 2023-06-13
CommunicationVolume 33, Issue 4, 448-450
4
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Elinson M. N. et al. An expedient cyclization of polyfunctional (aryl)(pyrimidinyl)(pyranyl)methanes into spiro[furo[3,2-c]pyran-2,5’-pyrimidine] scaffold // Mendeleev Communications. 2023. Vol. 33. No. 4. pp. 448-450.
GOST all authors (up to 50) Copy
Elinson M. N., Vereshchagin A. N., Ryzhkova Y. E., Karpenko K. A., Kalashnikova V. M., Egorov M. P. An expedient cyclization of polyfunctional (aryl)(pyrimidinyl)(pyranyl)methanes into spiro[furo[3,2-c]pyran-2,5’-pyrimidine] scaffold // Mendeleev Communications. 2023. Vol. 33. No. 4. pp. 448-450.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2023.06.002
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.06.002
TI - An expedient cyclization of polyfunctional (aryl)(pyrimidinyl)(pyranyl)methanes into spiro[furo[3,2-c]pyran-2,5’-pyrimidine] scaffold
T2 - Mendeleev Communications
AU - Elinson, Michail Nikolaevich
AU - Vereshchagin, Anatoly Nikolaevich
AU - Ryzhkova, Yuliya Evgenievna
AU - Karpenko, Kirill Anatol'evich
AU - Kalashnikova, Varvara Mikhailovna
AU - Egorov, Mikhail Petrovich
PY - 2023
DA - 2023/06/13
PB - Mendeleev Communications
SP - 448-450
IS - 4
VL - 33
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Elinson,
author = {Michail Nikolaevich Elinson and Anatoly Nikolaevich Vereshchagin and Yuliya Evgenievna Ryzhkova and Kirill Anatol'evich Karpenko and Varvara Mikhailovna Kalashnikova and Mikhail Petrovich Egorov},
title = {An expedient cyclization of polyfunctional (aryl)(pyrimidinyl)(pyranyl)methanes into spiro[furo[3,2-c]pyran-2,5’-pyrimidine] scaffold},
journal = {Mendeleev Communications},
year = {2023},
volume = {33},
publisher = {Mendeleev Communications},
month = {Jun},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.06.002},
number = {4},
pages = {448--450},
doi = {10.1016/j.mencom.2023.06.002}
}
MLA
Cite this
MLA Copy
Elinson, Michail Nikolaevich, et al. “An expedient cyclization of polyfunctional (aryl)(pyrimidinyl)(pyranyl)methanes into spiro[furo[3,2-c]pyran-2,5’-pyrimidine] scaffold.” Mendeleev Communications, vol. 33, no. 4, Jun. 2023, pp. 448-450. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.06.002.

Keywords

2-c]pyran-2
2-c]pyrans
4
5’-pyrimidine]
6-triones.
base-oxidant system
Cyclization
furo[3
morpholinium salts
N-bromosuccinimide
pyranones
pyrimidine-2
sodium acetate
spiro[furo- [3

Abstract

Spirocyclization of morpholinium 3-[(aryl)(1,3-dimethyl-2,4,6-trioxohexahydropyrimidin-5-yl)methyl]-6-methyl-2-oxo-2H-pyran-4-olate by the action of sodium acetate-N-bromosuccinimide system in ethanol at room temperature results in spiro[furo[3,2-c]pyran-2,5’-pyrimidine] derivatives in 92-98% yields, the protocol allowing to avoid column chromatography purification. This new highly efficient and facile procedure is a convenient way to substituted unsymmetrical spiro scaffold containing pyrimidine-2,4,6-trione and 2,3-dihydro-4H-furo[3,2-c]pyran-4-one fragments promising for biomedical applications.

References

.
Use of Bromine and Bromo-Organic Compounds in Organic Synthesis
.
Spirocyclic Scaffolds in Medicinal Chemistry
Hiesinger K., Dar’in D., Proschak E., Krasavin M.
Journal of Medicinal Chemistry, 2020
.
Pyrimidine-2,4,6-Triones: A New Effective and Selective Class of Matrix Metalloproteinase Inhibitors
Grams F., Brandstetter H., DAlò S., Geppert D., Krell H., Leinert H., Livi V., Menta E., Oliva A., Zimmermann G.
Biological Chemistry, 2001
.
Latent inhibitors. Part 7. Inhibition of dihydro-orotate dehydrogenase by spirocyclopropanobarbiturates
Fraser W., Suckling C.J., Wood H.C.
Journal of the Chemical Society Perkin Transactions 1, 1990
.
The use of spirocyclic scaffolds in drug discovery
Zheng Y., Tice C.M., Singh S.B.
Bioorganic and Medicinal Chemistry Letters, 2014
.
Electrochemical synthesis of cyclopropanes
Elinson M.N., Dorofeeva E.O., Vereshchagin A.N., Nikishin G.I.
Russian Chemical Reviews, 2015
.
Privileged Structures Revisited
Schneider P., Schneider G.
Angewandte Chemie - International Edition, 2017
.
Bromine-Mediated Cross-Dehydrogenative Coupling (CDC) Reactions
Wang B., Wong H.N.
Bulletin of the Chemical Society of Japan, 2018
.
Structure-based design of potent and selective inhibitors of collagenase-3 (MMP-13)
Kim S., Pudzianowski A.T., Leavitt K.J., Barbosa J., McDonnell P.A., Metzler W.J., Rankin B.M., Liu R., Vaccaro W., Pitts W.
Bioorganic and Medicinal Chemistry Letters, 2005
.
The utilization of spirocyclic scaffolds in novel drug discovery
Zheng Y., Tice C.M.
Expert Opinion on Drug Discovery, 2016
.
Catalyzing the Erlenmeyer Plöchl reaction: organic bases versus sodium acetate
Cleary T., Rawalpally T., Kennedy N., Chavez F.
Tetrahedron Letters, 2010
.
A new type of cascade reaction: direct conversion of carbonyl compounds and malononitrile into substituted tetracyanocyclopropanes
Elinson M.N., Vereshchagin A.N., Stepanov N.O., Ilovaisky A.I., Vorontsov A.Y., Nikishin G.I.
Tetrahedron, 2009
.
Nonpeptidic HIV protease inhibitors: 3-(S-benzyl substituted)-4-hydroxy-6-(phenyl substituted)-2H-pyran-2-one with an inverse mode of binding
Vara Prasad J.V., Pavlovsky A., Para K.S., Ellsworth E.L., Tummino P.J., Nouhan C., Ferguson D.
Bioorganic and Medicinal Chemistry Letters, 1996
.
Yin P., Liu X., Qiu Y., Cai J., Qin J., Zhu H., Li Q.
Asian Pacific Journal of Cancer Prevention, 2012
.
Examining barbiturate scaffold for the synthesis of new agents with biological interest
Katsamakas S., Papadopoulos A.G., Kouskoura M.G., Markopoulou C.K., Hadjipavlou-Litina D.
Future Medicinal Chemistry, 2019