Home / Publications / Titanium dioxide nanoparticles heavily doped with niobium: A light-induced electron paramagnetic resonance study

Titanium dioxide nanoparticles heavily doped with niobium: A light-induced electron paramagnetic resonance study

Vladimir Yur'evich Osipov 1, 2
Vladimir Yur'evich Osipov
Dong Hao 3, 4
Dong Hao
Kazuyuki Takai 2
Kazuyuki Takai
Tetsuo Uchikoshi 4, 5
Tetsuo Uchikoshi
Hironori Ogata 2, 4
Hironori Ogata
Takamasa Ishigaki 2, 4
Takamasa Ishigaki
1 Ioffe Institute, St. Petersburg, Russian Federation
2 Department of Chemical Science and Technology, Hosei University, Tokyo, Japan
3 Ceramic Research Center, Saga University, Arita, Saga, Japan
4 Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo, Japan
5 Research Center for Functional Materials, National Institute for Material Science, Tsukuba, Ibaraki, Japan
Published 2023-04-13
CommunicationVolume 33, Issue 3, 349-352
4
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Osipov V. Y. et al. Titanium dioxide nanoparticles heavily doped with niobium: A light-induced electron paramagnetic resonance study // Mendeleev Communications. 2023. Vol. 33. No. 3. pp. 349-352.
GOST all authors (up to 50) Copy
Osipov V. Y., Hao D., Takai K., Uchikoshi T., Ogata H., Ishigaki T. Titanium dioxide nanoparticles heavily doped with niobium: A light-induced electron paramagnetic resonance study // Mendeleev Communications. 2023. Vol. 33. No. 3. pp. 349-352.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2023.04.017
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.04.017
TI - Titanium dioxide nanoparticles heavily doped with niobium: A light-induced electron paramagnetic resonance study
T2 - Mendeleev Communications
AU - Osipov, Vladimir Yur'evich
AU - Hao, Dong
AU - Takai, Kazuyuki
AU - Uchikoshi, Tetsuo
AU - Ogata, Hironori
AU - Ishigaki, Takamasa
PY - 2023
DA - 2023/04/13
PB - Mendeleev Communications
SP - 349-352
IS - 3
VL - 33
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Osipov,
author = {Vladimir Yur'evich Osipov and Dong Hao and Kazuyuki Takai and Tetsuo Uchikoshi and Hironori Ogata and Takamasa Ishigaki},
title = {Titanium dioxide nanoparticles heavily doped with niobium: A light-induced electron paramagnetic resonance study},
journal = {Mendeleev Communications},
year = {2023},
volume = {33},
publisher = {Mendeleev Communications},
month = {Apr},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.04.017},
number = {3},
pages = {349--352},
doi = {10.1016/j.mencom.2023.04.017}
}
MLA
Cite this
MLA Copy
Osipov, Vladimir Yur'evich, et al. “Titanium dioxide nanoparticles heavily doped with niobium: A light-induced electron paramagnetic resonance study.” Mendeleev Communications, vol. 33, no. 3, Apr. 2023, pp. 349-352. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.04.017.

Keywords

charge transfer.
electron and hole traps
electron paramagnetic resonance
niobium
photocatalysts
titanium dioxide

Abstract

Light-induced electron paramagnetic resonance (EPR) spectra of titanium dioxide nanoparticles heavily doped with niobium(v) are studied. At low temperatures, the EPR signal caused by interband illumination is associated with paramagnetic Ti3+ sites in anatase, which, as the temperature rises above 210 K, are discharged to the non-paramagnetic Ti4+ state due to the escape of trapped photoelectrons and their recombination with holes. The temperature dependence of the integral EPR signal has a non-Curie character, especially in the temperature range where the discharge of Ti3+ centers is already significant.

References

.
New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2
.
Review of the anatase to rutile phase transformation
Hanaor D.A., Sorrell C.C.
Journal of Materials Science, 2010
.
Titanium dioxide photocatalysis
Fujishima A., Rao T.N., Tryk D.A.
Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000
.
Charge trapping in TiO2 polymorphs as seen by Electron Paramagnetic Resonance spectroscopy
Chiesa M., Paganini M.C., Livraghi S., Giamello E.
Physical Chemistry Chemical Physics, 2013
.
Trapped holes on titania colloids studied by electron paramagnetic resonance
Micic O.I., Zhang Y., Cromack K.R., Trifunac A.D., Thurnauer M.C.
The Journal of Physical Chemistry, 1993
.
How the Anatase-to-Rutile Ratio Influences the Photoreactivity of TiO2
Su R., Bechstein R., Sø L., Vang R.T., Sillassen M., Esbjörnsson B., Palmqvist A., Besenbacher F.
Journal of Physical Chemistry C, 2011
.
Photocatalytic decomposition and reduction reactions of nitric oxide over Degussa P25
Bowering N., Walker G.S., Harrison P.G.
Applied Catalysis B: Environmental, 2006
.
Probing reaction mechanisms in mixed phase TiO2 by EPR
Hurum D.C., Agrios A.G., Crist S.E., Gray K.A., Rajh T., Thurnauer M.C.
Journal of Electron Spectroscopy and Related Phenomena, 2006
.
Band alignment of rutile and anatase TiO2
Scanlon D.O., Dunnill C.W., Buckeridge J., Shevlin S.A., Logsdail A.J., Woodley S.M., Catlow C.R., Powell M.J., Palgrave R.G., Parkin I.P., Watson G.W., Keal T.W., Sherwood P., Walsh A., Sokol A.A., et. al.
Nature Materials, 2013
.
Explaining the Enhanced Photocatalytic Activity of Degussa P25 Mixed-Phase TiO2 Using EPR
Hurum D.C., Agrios A.G., Gray K.A., Rajh T., Thurnauer M.C.
Journal of Physical Chemistry B, 2003
.
Pyrogenic Iron(III)-Doped TiO2 Nanopowders Synthesized in RF Thermal Plasma:  Phase Formation, Defect Structure, Band Gap, and Magnetic Properties
Wang X.H., Li J.-., Kamiyama H., Katada M., Ohashi N., Moriyoshi Y., Ishigaki T.
Journal of the American Chemical Society, 2005
.
Nature of Rutile Nuclei in Anatase-to-Rutile Phase Transition
Zhu S., Xie S., Liu Z.
Journal of the American Chemical Society, 2015
.
First-Principles Modeling of Polaron Formation in TiO2 Polymorphs
Elmaslmane A.R., Watkins M.B., McKenna K.P.
Journal of Chemical Theory and Computation, 2018
.
Remarkable Charge Separation and Photocatalytic Efficiency Enhancement through Interconnection of TiO2 Nanoparticles by Hydrothermal Treatment
Ide Y., Inami N., Hattori H., Saito K., Sohmiya M., Tsunoji N., Komaguchi K., Sano T., Bando Y., Golberg D., Sugahara Y.
Angewandte Chemie - International Edition, 2016
.
Highly pseudocapacitive Nb-doped TiO2 high power anodes for lithium-ion batteries
Lübke M., Shin J., Marchand P., Brett D., Shearing P., Liu Z., Darr J.A.
Journal of Materials Chemistry A, 2015
.
Effect of Niobium on the Structure and Photoactivity of Anatase (TiO2) Nanoparticles
Hirano M., Matsushima K.
Journal of Nanoscience and Nanotechnology, 2006
.
High-concentration niobium (V) doping into TiO2 nanoparticles synthesized by thermal plasma processing
Zhang C., Ikeda M., Uchikoshi T., Li J., Watanabe T., Ishigaki T.
Journal of Materials Research, 2011
.
Angular overlap treatment and electron spin resonance of titanium(III) in anatase
Meriaudeau P., Che M., Jørgensen C.K.
Chemical Physics Letters, 1970
.
10.1002/1521-3773(20010817)40:16<2954::AID-ANIE2954>3.0.CO;2-#
.
Titanium dioxide nanotubes: synthesis, structure, properties and applications
Rempel A.A., Valeeva A.A., Vokhmintsev A.S., Weinstein I.A.
Russian Chemical Reviews, 2021
.
Defect engineering toward strong photocatalysis of Nb-doped anatase TiO2: Computational predictions and experimental verifications
Khan S., Cho H., Kim D., Han S.S., Lee K.H., Cho S., Song T., Choi H.
Applied Catalysis B: Environmental, 2017
.
EPR Spectroscopy in Catalysis
Van Doorslaer S., Murphy D.M.
Topics in Current Chemistry, 2011
.
Osipov V.Y., Romanov N.M., Suvorkova I.E., Osipova E.V., Tsuji T., Ishiguro Y., Takai K.
Mendeleev Communications, 2022