Home / Publications / An approach to enhanced redispersibility of cellulose nanocrystals via freeze-drying their Pickering emulsions

An approach to enhanced redispersibility of cellulose nanocrystals via freeze-drying their Pickering emulsions

Oleg Valentinovich Surov 1
Oleg Valentinovich Surov
Marina Igorevna Voronova 1
Marina Igorevna Voronova
1 G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Ivanovo, Russian Federation
Published 2023-02-13
CommunicationVolume 33, Issue 2, 272-274
1
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Surov O. V., Voronova M. I. An approach to enhanced redispersibility of cellulose nanocrystals via freeze-drying their Pickering emulsions // Mendeleev Communications. 2023. Vol. 33. No. 2. pp. 272-274.
GOST all authors (up to 50) Copy
Surov O. V., Voronova M. I. An approach to enhanced redispersibility of cellulose nanocrystals via freeze-drying their Pickering emulsions // Mendeleev Communications. 2023. Vol. 33. No. 2. pp. 272-274.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2023.02.040
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.02.040
TI - An approach to enhanced redispersibility of cellulose nanocrystals via freeze-drying their Pickering emulsions
T2 - Mendeleev Communications
AU - Surov, Oleg Valentinovich
AU - Voronova, Marina Igorevna
PY - 2023
DA - 2023/02/13
PB - Mendeleev Communications
SP - 272-274
IS - 2
VL - 33
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Surov,
author = {Oleg Valentinovich Surov and Marina Igorevna Voronova},
title = {An approach to enhanced redispersibility of cellulose nanocrystals via freeze-drying their Pickering emulsions},
journal = {Mendeleev Communications},
year = {2023},
volume = {33},
publisher = {Mendeleev Communications},
month = {Feb},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.02.040},
number = {2},
pages = {272--274},
doi = {10.1016/j.mencom.2023.02.040}
}
MLA
Cite this
MLA Copy
Surov, Oleg Valentinovich, and Marina Igorevna Voronova. “An approach to enhanced redispersibility of cellulose nanocrystals via freeze-drying their Pickering emulsions.” Mendeleev Communications, vol. 33, no. 2, Feb. 2023, pp. 272-274. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.02.040.

Keywords

cellulose nanocrystals
cryogel
freeze-drying
Pickering emulsion
redispersibility.

Abstract

To enhance the redispersibility of dried nanocellulose, cellulose nanocrystal (CNC) cryogels were produced by freeze-drying CNC-stabilized cyclohexane-in-water Pickering emulsions. The CNC cryogels were easily redispersed in water and organic solvents; thus, the approach proposed made it possible to significantly improve CNC redispersibility in aqueous and nonaqueous media.

References

.
Dispersibility of Nanocrystalline Cellulose in Organic Solvents
Voronova M.I., Surov O.V., Rubleva N.V., Kochkina N.E., Zakharov A.G.
Russian Journal of Bioorganic Chemistry, 2020
.
Ultrasonication of spray- and freeze-dried cellulose nanocrystals in water
Beuguel Q., Tavares J.R., Carreau P.J., Heuzey M.
Journal of Colloid and Interface Science, 2018
.
Spectroscopic characterization of single co-crystal of mefenamic acid and nicotinamide using supercritical CO2
Vaksler Y.A., Benedis D., Dyshin A.A., Oparin R.D., Correia N.T., Capet F., Shishkina S.V., Kiselev M.G., Idrissi A.
Journal of Molecular Liquids, 2021
.
Nanocellulose Dewatering and Drying: Current State and Future Perspectives
Sinquefield S., Ciesielski P.N., Li K., Gardner D.J., Ozcan S.
ACS Sustainable Chemistry and Engineering, 2020
.
Hierarchically Structured Nanocellulose-Implanted Air Filters for High-Efficiency Particulate Matter Removal
.
Conversion Economics of Forest Biomaterials: Risk and Financial Analysis ofCNCManufacturing
de Assis C.A., Houtman C., Phillips R., Bilek E.M., Rojas O.J., Pal L., Peresin M.S., Jameel H., Gonzalez R.
Biofuels, Bioproducts and Biorefining, 2017
.
Re-Dispersible 1D and 2D Nanoparticle Solid Powders without any Surfactant
.
Cellulose Nanocrystals as a Sustainable Raw Material: Cytotoxicity and Applications on Healthcare Technology
Pelegrini B.L., Ré F., de Oliveira M.M., Fernandes T., Oliveira J.H., Oliveira Junior A.G., Girotto E.M., Nakamura C.V., Sampaio A.R., Valim A., Souza Lima M.M.
Macromolecular Materials and Engineering, 2019
.
Nanocellulose in Emulsions and Heterogeneous Water‐Based Polymer Systems: A Review
Kedzior S.A., Gabriel V.A., Dubé M.A., Cranston E.D.
Advanced Materials, 2020
.
A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization
Nagarajan K.J., Ramanujam N.R., Sanjay M.R., Siengchin S., Surya Rajan B., Sathick Basha K., Madhu P., Raghav G.R.
Polymer Composites, 2021
.
Drying techniques applied to cellulose nanofibers
Zimmermann M.V., Borsoi C., Lavoratti A., Zanini M., Zattera A.J., Santana R.M.
Journal of Reinforced Plastics and Composites, 2016
.
Orlova M.A., Spiridonov V.V., Badun G.A., Trofimova T.P., Orlov A.P., Zolotova A.S., Priselkova A.B., Aleshin G.Y., Chernysheva M.G., Yaroslavov A.A., Kalmykov S.N.
Mendeleev Communications, 2022
.
Easy way to prepare dispersible CNC dry powder by precipitation and conventional evaporation
Zhu Z., Wang W., Wang X., Zhao X., Xia N., Kong F., Wang S.
Cellulose, 2021
.
Processing nanocellulose to bulk materials: a review
Wang Q., Yao Q., Liu J., Sun J., Zhu Q., Chen H.
Cellulose, 2019
.
Lupin hull cellulose nanofiber aerogel preparation by supercritical CO 2 and freeze drying
Ciftci D., Ubeyitogullari A., Huerta R.R., Ciftci O.N., Flores R.A., Saldaña M.D.
Journal of Supercritical Fluids, 2017
.
The effect of drying technique of nanocellulose dispersions on properties of dried materials
Voronova M.I., Zakharov A.G., Kuznetsov O.Y., Surov O.V.
Materials Letters, 2012
.
Synthesis and conservation of cellulose nanocrystals
Di Giorgio L., Martín L., Salgado P.R., Mauri A.N.
Carbohydrate Polymers, 2020
.
Bottom-up assembly of nanocellulose structures
Niinivaara E., Cranston E.D.
Carbohydrate Polymers, 2020
.
Nanocellulose-based lightweight porous materials: A review
Sun Y., Chu Y., Wu W., Xiao H.
Carbohydrate Polymers, 2021
.
Averianov I.V., Stepanova M.A., Gofman I.V., Lavrentieva A., Korzhikov-Vlakh V.A., Korzhikova-Vlakh E.G.
Mendeleev Communications, 2022