Home / Publications / Synthesis of arsonium salts and betaines based on triphenylarsine and ω-bromoalkanoic acids

Synthesis of arsonium salts and betaines based on triphenylarsine and ω-bromoalkanoic acids

Semyon Romanovich Romanov 1
Semyon Romanovich Romanov
Marina Petrovna Shulaeva 2
Marina Petrovna Shulaeva
Oskar Kimovich Pozdeev 2
Oskar Kimovich Pozdeev
Daut Rinatovich Islamov 1
Daut Rinatovich Islamov
1 Alexander Butlerov Institute of Chemistry, Kazan Federal University, Kazan, Russian Federation
2 Kazan State Medical Academy, Kazan, Russian Federation
Published 2023-02-13
CommunicationVolume 33, Issue 2, 249-251
0
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Romanov S. R. et al. Synthesis of arsonium salts and betaines based on triphenylarsine and ω-bromoalkanoic acids // Mendeleev Communications. 2023. Vol. 33. No. 2. pp. 249-251.
GOST all authors (up to 50) Copy
Romanov S. R., Shibaeva K. O., Shulaeva M. P., Pozdeev O. K., Islamov D. R., Galkina I. V., Bakhtiyarova Y. V. Synthesis of arsonium salts and betaines based on triphenylarsine and ω-bromoalkanoic acids // Mendeleev Communications. 2023. Vol. 33. No. 2. pp. 249-251.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2023.02.032
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.02.032
TI - Synthesis of arsonium salts and betaines based on triphenylarsine and ω-bromoalkanoic acids
T2 - Mendeleev Communications
AU - Romanov, Semyon Romanovich
AU - Shibaeva, Karina Olegovna
AU - Shulaeva, Marina Petrovna
AU - Pozdeev, Oskar Kimovich
AU - Islamov, Daut Rinatovich
AU - Galkina, Irina Vasilievna
AU - Bakhtiyarova, Yulia Valerievna
PY - 2023
DA - 2023/02/13
PB - Mendeleev Communications
SP - 249-251
IS - 2
VL - 33
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2023_Romanov,
author = {Semyon Romanovich Romanov and Karina Olegovna Shibaeva and Marina Petrovna Shulaeva and Oskar Kimovich Pozdeev and Daut Rinatovich Islamov and Irina Vasilievna Galkina and Yulia Valerievna Bakhtiyarova},
title = {Synthesis of arsonium salts and betaines based on triphenylarsine and ω-bromoalkanoic acids},
journal = {Mendeleev Communications},
year = {2023},
volume = {33},
publisher = {Mendeleev Communications},
month = {Feb},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.02.032},
number = {2},
pages = {249--251},
doi = {10.1016/j.mencom.2023.02.032}
}
MLA
Cite this
MLA Copy
Romanov, Semyon Romanovich, et al. “Synthesis of arsonium salts and betaines based on triphenylarsine and ω-bromoalkanoic acids.” Mendeleev Communications, vol. 33, no. 2, Feb. 2023, pp. 249-251. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.02.032.

Keywords

antitumor agents
arsenobetaines
arsonium salts
biological activity
carboxylic acids
organoarsenic compounds.
phosphobetaine
phosphonium salts

Abstract

The reactions between Ph3As and ω-bromoalkanoic acids with the length of polymethylene fragment n = 5, 7, 9 afford quaternary arsonium salts. Their treatment with alkali gives biologically active arsenobetaines. Solvent-free reactions of Ph3P or Ph3As with 2,3-dibromopropionic acid lead to the corresponding arsonium and phosphonium salts bearing (CH2)2COOH substituent.

References

.
Mercury: visualization and analysis of crystal structures
Macrae C.F., Edgington P.R., McCabe P., Pidcock E., Shields G.P., Taylor R., Towler M., van de Streek J.
Journal of Applied Crystallography, 2006
.
Synthesis and in vitro evaluation of triphenylphosphonium derivatives of acetylsalicylic and salicylic acids: structure-dependent interactions with cancer cells, bacteria, and mitochondria
Tsepaeva O.V., Salikhova T.I., Grigor’eva L.R., Ponomaryov D.V., Dang T., Ishkaeva R.A., Abdullin T.I., Nemtarev A.V., Mironov V.F.
Medicinal Chemistry Research, 2021
.
Rational design 2-hydroxypropylphosphonium salts as cancer cell mitochondria-targeted vectors: Synthesis, structure, and biological properties
Mironov V.F., Nemtarev A.V., Tsepaeva O.V., Dimukhametov M.N., Litvinov I.A., Voloshina A.D., Pashirova T.N., Titov E.A., Lyubina A.P., Amerhanova S.K., Gubaidullin A.T., Islamov D.R.
Molecules, 2021
.
Targeting drugs to mitochondria
Heller A., Brockhoff G., Goepferich A.
European Journal of Pharmaceutics and Biopharmaceutics, 2012
.
Crystal structure of triphenylphosphine oxide
Al-Farhan K.A.
Journal of Chemical Crystallography, 1992
.
Betaine Supplementation Enhances Lipid Metabolism and Improves Insulin Resistance in Mice Fed a High-Fat Diet
Du J., Shen L., Tan Z., Zhang P., Zhao X., Xu Y., Gan M., Yang Q., Ma J., Jiang A., Tang G., Jiang Y., Jin L., Li M., Bai L., et. al.
Nutrients, 2018
.
New biologically active phosphonium salts based on 3-(diphenylphosphino)propionic acid and unsaturated amides
Bakhtiyarova Y.V., Morozov M.V., Romanov S.R., Minnullin R.R., Shulaeva M.P., Pozdeev O.K., Galkina I.V., Galkin V.I.
Russian Chemical Bulletin, 2020
.
Reactions of Triphenylphospine with ω-Bromoalkanecarboxylic Acids
Romanov S.R., Khafizova A.I., Gerasimov A.V., Islamov D.R., Shulaeva M.P., Pozdeev O.K., Galkina I.V., Galkin V.I., Bakhtiyarova Y.V.
Russian Journal of General Chemistry, 2022
.
Synthesis of carboxylate arsenobetaines based on (carboxyalkyl)triphenylarsonium halides
Bakhtiyarova Y.V., Aksunova A.F., Galkin V.I., Galkina I.V.
Russian Journal of General Chemistry, 2015
.
Kinetics and mechanism of triphenylphosphine quarternization with unsaturated carboxylic acids in the medium of acetic acid
Galkin V.I., Salin A.V., Bakhtiyarova Y.V., Sobanov A.A.
Russian Journal of General Chemistry, 2009
.
Reaction of 2,3-Dihalopropionic Acids and Their Derivatives with P- and N-Nucleophiles
Khachikyan R.D., Tovmasyan N.V., Indzhikyan M.G.
Russian Journal of General Chemistry, 2005
.
Investigation of the reaction of benztrifuroxan with triphenylphosphine
Bailey A.S., Cameron T.S., Evans J.M., Prout C.K.
Chemical Communications (London), 1966
.
Essential trace elements in humans
Mayer D.R., Kosmus W., Pogglitsch H., mayer D., Beyer W.
Biological Trace Element Research, 1993
.
The acute toxicity of arsenobetaine
Kaise T., Watanabe S., Itoh K.
Chemosphere, 1985
.
Mechanism of multi-metal(loid) methylation and hydride generation by methylcobalamin and cob(I)alamin: a side reaction of methanogenesis
Wuerfel O., Thomas F., Schulte M.S., Hensel R., Diaz-Bone R.A.
Applied Organometallic Chemistry, 2012
.
Arsenobetaine as the major arsenic compound in the muscle of two species of freshwater fish
Shiomi K., Sugiyama Y., Shimakura K., Nagashima Y.
Applied Organometallic Chemistry, 1995
.
Triphenylphosphine in reactions with ω-haloalkylcarboxylic acids
Romanov S.R., Aksunova A.F., Islamov D.R., Dobrynin A.B., Krivolapov D.B., Kataeva O.N., Bakhtiyarova Y.V., Gnezdilov O.I., Galkina I.V., Galkin V.I.
Phosphorus, Sulfur and Silicon and the Related Elements, 2016
.
Extraction of arsenic compounds from lichens
Mrak T., Šlejkovec Z., Jeran Z.
Talanta, 2006
.
Romanov S.R., Dolgova Y.V., Morozov M.V., Ivshin K.A., Semenov D.A., Bakhtiyarova Y.V., Galkina I.V., Kataeva O.N., Galkin V.I.
Mendeleev Communications, 2021
.
Isolation, crystal structure and synthesis of arsenobetaine, a constituent of the western rock lobster, the dusky shark, and some samples of human urine
Cannon J., Edmonds J., Francesconi K., Raston C., Saunders J., Skelton B., White A.
Australian Journal of Chemistry, 1981
.
Lunde G., Hansen S.E., Dich J., Tricker M.J., Svensson S.
Acta Chemica Scandinavica, 1972