Home / Publications / Electronic structure of carbon nanotube network

Electronic structure of carbon nanotube network

Alexander Nikolaevich Ulyanov 1
Alexander Nikolaevich Ulyanov
Evgeniya Viktorovna Suslova 1
Evgeniya Viktorovna Suslova
Serguei Vyacheslavovich Savilov
1 Department of Chemistry, M.V. Lomonosov Moscow State University, Moscow, Russian Federation
2 A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
Published 2022-12-26
CommunicationVolume 33, Issue 1, 127-129
3
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Ulyanov A. N., Suslova E. V., Savilov S. V. Electronic structure of carbon nanotube network // Mendeleev Communications. 2022. Vol. 33. No. 1. pp. 127-129.
GOST all authors (up to 50) Copy
Ulyanov A. N., Suslova E. V., Savilov S. V. Electronic structure of carbon nanotube network // Mendeleev Communications. 2022. Vol. 33. No. 1. pp. 127-129.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2023.01.040
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.01.040
TI - Electronic structure of carbon nanotube network
T2 - Mendeleev Communications
AU - Ulyanov, Alexander Nikolaevich
AU - Suslova, Evgeniya Viktorovna
AU - Savilov, Serguei Vyacheslavovich
PY - 2022
DA - 2022/12/26
PB - Mendeleev Communications
SP - 127-129
IS - 1
VL - 33
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Ulyanov,
author = {Alexander Nikolaevich Ulyanov and Evgeniya Viktorovna Suslova and Serguei Vyacheslavovich Savilov},
title = {Electronic structure of carbon nanotube network},
journal = {Mendeleev Communications},
year = {2022},
volume = {33},
publisher = {Mendeleev Communications},
month = {Dec},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.01.040},
number = {1},
pages = {127--129},
doi = {10.1016/j.mencom.2023.01.040}
}
MLA
Cite this
MLA Copy
Ulyanov, Alexander Nikolaevich, et al. “Electronic structure of carbon nanotube network.” Mendeleev Communications, vol. 33, no. 1, Dec. 2022, pp. 127-129. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.01.040.
Views
1

Keywords

charge carrier hopping mechanism.
cross-linked carbon nanotubes
electron paramagnetic resonance
electronic structure
spark plasma sintering
transmission electron microscopy
X-ray photoelectron spectroscopy

Abstract

Covalently cross-linked carbon nanotube network has been synthesized using spark plasma sintering followed by nitric acid treatment. EPR investigation of its electronic structure in comparison with pristine carbon nanotubes has revealed that the covalent cross-linking leads to a decrease in the number of paramagnetic centers, while the oxidation results in an increase in their number. The oxidation affects the cross-linked and pristine materials in a different manner

References

.
Conversion of Secondary C3-C4 Aliphatic Alcohols on Carbon Nanotubes Consolidated by Spark Plasma Sintering
Savilov S., Suslova E., Epishev V., Tveritinova E., Zhitnev Y., Ulyanov A., Maslakov K., Isaikina O.
Nanomaterials, 2021
.
3D Porous Graphene by Low-Temperature Plasma Welding for Bone Implants
Chakravarty D., Tiwary C.S., Woellner C.F., Radhakrishnan S., Vinod S., Ozden S., da Silva Autreto P.A., Bhowmick S., Asif S., Mani S.A., Galvao D.S., Ajayan P.M.
Advanced Materials, 2016
.
Doped carbon nanotubes as a model system of biased graphene
Szirmai P., Márkus B.G., Dóra B., Fábián G., Koltai J., Zólyomi V., Kürti J., Náfrádi B., Forró L., Pichler T., Simon F.
Physical Review B, 2017
.
Multiwalled carbon nanotube monoliths prepared by spark plasma sintering (SPS) and their mechanical properties
Uo M., Hasegawa T., Akasaka T., Tanaka I., Munekane F., Omori M., Kimura H., Nakatomi R., Soga K., Kogo Y., Watari F.
Bio-Medical Materials and Engineering, 2019
.
Magnetism in pristine and chemically reduced graphene oxide
Diamantopoulou Α., Glenis S., Zolnierkiwicz G., Guskos N., Likodimos V.
Journal of Applied Physics, 2017
.
The impact of adsorption on the localization of spins in graphene oxide and reduced graphene oxide, observed with electron paramagnetic resonance
Kempiński M., Florczak P., Jurga S., Śliwińska-Bartkowiak M., Kempiński W.
Applied Physics Letters, 2017
.
Paving thermally conductive highway by 3D interconnected framework of carbon nanotube and graphene oxide in poly(vinylidene fluoride)
Cao M., Du C., Guo H., Li X., Song S., Handan Tezel F., Li B.
Composites - Part A: Applied Science and Manufacturing, 2018
.
ESR study of spin relaxation in graphene
Augustyniak-Jabłokow M.A., Tadyszak K., Maćkowiak M., Lijewski S.
Chemical Physics Letters, 2013
.
Pr0.7Ca0.15Ba0.15MnO3 manganite: Electron paramagnetic resonance, conductivity and susceptibility
Ulyanov A.N., Quang H.D., Pismenova N.E., Yu S.C., Levchenko G.G.
Solid State Communications, 2012
.
Magnetic and electric properties of partially reduced graphene oxide aerogels
Tadyszak K., Chybczyńska K., Ławniczak P., Zalewska A., Cieniek B., Gonet M., Murias M.
Journal of Magnetism and Magnetic Materials, 2019
.
Preparation and characteristics of a binderless carbon nanotube monolith and its biocompatibility
Wang W., Yokoyama A., Liao S., Omori M., Zhu Y., Uo M., Akasaka T., Watari F.
Materials Science and Engineering C, 2008
.
Local structure and magnetic inhomogeneity of nano-sized La0.7Sr0.3MnO3manganites
Ulyanov A.N., Yang D.S., Mazur A.S., Krivoruchko V.N., Levchenko G.G., Danilenko I.A., Konstantinova T.E.
Journal of Applied Physics, 2011
.
Local electronic structure of carbon nanotubes consolidated by spark plasma sintering
Ulyanov A.N., Suslova E.V., Maslakov K.I., Singh P.K., Savilov S.V.
Functional Materials Letters, 2022