Home / Publications / NMR study of thiosulfate-assisted oxidation of L-cysteine

NMR study of thiosulfate-assisted oxidation of L-cysteine

Tatyana Vyacheslavovna Berestova 1
Tatyana Vyacheslavovna Berestova
Liana A Khamitova 1
Liana A Khamitova
Olga Valer'evna Lusina 1
Olga Valer'evna Lusina
Ludmila Georgievna Kuzina 1
Ludmila Georgievna Kuzina
Alexander Nikolaevich Lobov 2
Alexander Nikolaevich Lobov
Akhat Gaziz'yanovich Mustafin 1, 2
Akhat Gaziz'yanovich Mustafin
1 Department of Chemistry, Bashkir State University, Ufa, Russian Federation
2 Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russian Federation
Published 2022-12-26
CommunicationVolume 33, Issue 1, 99-102
2
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Berestova T. V. et al. NMR study of thiosulfate-assisted oxidation of L-cysteine // Mendeleev Communications. 2022. Vol. 33. No. 1. pp. 99-102.
GOST all authors (up to 50) Copy
Berestova T. V., Khamitova L. A., Lusina O. V., Kuzina L. G., Lobov A. N., Mustafin A. G. NMR study of thiosulfate-assisted oxidation of L-cysteine // Mendeleev Communications. 2022. Vol. 33. No. 1. pp. 99-102.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2023.01.031
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.01.031
TI - NMR study of thiosulfate-assisted oxidation of L-cysteine
T2 - Mendeleev Communications
AU - Berestova, Tatyana Vyacheslavovna
AU - Khamitova, Liana A
AU - Lusina, Olga Valer'evna
AU - Kuzina, Ludmila Georgievna
AU - Lobov, Alexander Nikolaevich
AU - Mustafin, Akhat Gaziz'yanovich
PY - 2022
DA - 2022/12/26
PB - Mendeleev Communications
SP - 99-102
IS - 1
VL - 33
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Berestova,
author = {Tatyana Vyacheslavovna Berestova and Liana A Khamitova and Olga Valer'evna Lusina and Ludmila Georgievna Kuzina and Alexander Nikolaevich Lobov and Akhat Gaziz'yanovich Mustafin},
title = {NMR study of thiosulfate-assisted oxidation of L-cysteine},
journal = {Mendeleev Communications},
year = {2022},
volume = {33},
publisher = {Mendeleev Communications},
month = {Dec},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.01.031},
number = {1},
pages = {99--102},
doi = {10.1016/j.mencom.2023.01.031}
}
MLA
Cite this
MLA Copy
Berestova, Tatyana Vyacheslavovna, et al. “NMR study of thiosulfate-assisted oxidation of L-cysteine.” Mendeleev Communications, vol. 33, no. 1, Dec. 2022, pp. 99-102. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.01.031.
Views
1

Keywords

disulfides
L-cysteine
L-cysteine S-sulfite
L-cysteine sulfenic acid
L-cystine
NMR study.
oxidation
thiols
thiosulfate

Abstract

The reaction of L-cysteine with sodium thiosulfate in aqueous solution at pH 9 affords mainly L-cystine with noticeable amounts of L-cysteine sulfonic anion -O2CCH(NH+)CH SO-. NMR study revealed the formation of intermediate L-cysteine sulfenic acid and L-cysteine S-sulfite, the latter existing in two active forms -O2CCH(NH2)CH2S(=S)O- and -O CCH(NH)CH SSO-.

References

.
Oxidation Of Thiols By Copper(II)
Smith R.C., Reed V.D., Hill W.E.
Phosphorus, Sulfur and Silicon and the Related Elements, 1994
.
Interaction of copper with cysteine: stability of cuprous complexes and catalytic role of cupric ions in anaerobic thiol oxidation
Rigo A., Corazza A., Luisa di Paolo M., Rossetto M., Ugolini R., Scarpa M.
Journal of Inorganic Biochemistry, 2004
.
Antioxidant Chemistry:  Oxidation of l-Cysteine and Its Metabolites by Chlorite and Chlorine Dioxide
Darkwa J., Olojo R., Chikwana E., Simoyi R.H.
Journal of Physical Chemistry A, 2004
.
New Insights into the Cystine-Sulfite Reaction
Zecchini M., Lucas R., Le Gresley A.
Molecules, 2019
.
Chiral Selectors in Voltammetric Sensors Based on Mixed Phenylalanine/Alanine Cu(II) and Zn(II) Complexes
Zilberg R.A., Berestova T.V., Gizatov R.R., Teres Y.B., Galimov M.N., Bulysheva E.O.
Inorganics, 2022
.
Dislocation-Actuated Growth and Inhibition of Hexagonall-Cystine Crystallization at the Molecular Level
Shtukenberg A.G., Poloni L.N., Zhu Z., An Z., Bhandari M., Song P., Rohl A.L., Kahr B., Ward M.D.
Crystal Growth and Design, 2014
.
l-Cysteine Modified by S-Sulfation: Consequence on Fragmentation Processes Elucidated by Tandem Mass Spectrometry and Chemical Dynamics Simulations
Macaluso V., Scuderi D., Crestoni M.E., Fornarini S., Corinti D., Dalloz E., Martinez-Nunez E., Hase W.L., Spezia R.
Journal of Physical Chemistry A, 2019
.
Effect of Cysteine Oxidation in SARS-CoV-2 Receptor-Binding Domain on Its Interaction with Two Cell Receptors: Insights from Atomistic Simulations
Ghasemitarei M., Privat-Maldonado A., Yusupov M., Rahnama S., Bogaerts A., Ejtehadi M.R.
Journal of Chemical Information and Modeling, 2021
.
Dealing with the sulfur part of cysteine: four enzymatic steps degradel-cysteine to pyruvate and thiosulfate in Arabidopsis mitochondria
Höfler S., Lorenz C., Busch T., Brinkkötter M., Tohge T., Fernie A.R., Braun H., Hildebrandt T.M.
Physiologia Plantarum, 2016
.
Amino Acid Oxidation: A Combined Study of Cysteine Oxo Forms by IRMPD Spectroscopy and Simulations
Scuderi D., Bodo E., Chiavarino B., Fornarini S., Crestoni M.E.
Chemistry - A European Journal, 2016
.
On the Reactions of Thiols, Sulfenic Acids, and Sulfinic Acids with Hydrogen Peroxide
Chauvin J.R., Pratt D.A.
Angewandte Chemie - International Edition, 2016
.
Cysteine Methylation Controls Radical Generation in the Cfr Radical AdoMet rRNA Methyltransferase
Challand M.R., Salvadori E., Driesener R.C., Kay C.W., Roach P.L., Spencer J.
PLoS ONE, 2013
.
Chemical methods for mapping cysteine oxidation
Alcock L.J., Perkins M.V., Chalker J.M.
Chemical Society Reviews, 2018
.
Illusory spirals and loops in crystal growth
Shtukenberg A.G., Zhu Z., An Z., Bhandari M., Song P., Kahr B., Ward M.D.
Proceedings of the National Academy of Sciences of the United States of America, 2013
.
Analysis of the Products from the Reaction of L-Cysteine with Fe(III) Compounds in Acidic Medium
Berestova T.V., Nizametdinova L.A., Lusina O.V., Lobov A.N., Mustafin A.G.
Journal of Applied Spectroscopy, 2022
.
Cysteine metabolic circuitries: druggable targets in cancer
Bonifácio V.D., Pereira S.A., Serpa J., Vicente J.B.
British Journal of Cancer, 2020
.
Enhancement of thioredoxin/glutaredoxin-mediated L-cysteine synthesis from S-sulfocysteine increases L-cysteine production in Escherichia coli
Nakatani T., Ohtsu I., Nonaka G., Wiriyathanawudhiwong N., Morigasaki S., Takagi H.
Microbial Cell Factories, 2012
.
Mechanism of Thiosulfate Oxidation in the SoxA Family of Cysteine-ligated Cytochromes
Grabarczyk D.B., Chappell P.E., Eisel B., Johnson S., Lea S.M., Berks B.C.
Journal of Biological Chemistry, 2015
.
A distal ligand mutes the interaction of hydrogen sulfide with human neuroglobin
Ruetz M., Kumutima J., Lewis B.E., Filipovic M.R., Lehnert N., Stemmler T.L., Banerjee R.
Journal of Biological Chemistry, 2017
.
ATR-FTIR spectroscopic investigation of the cis- and trans- bis-( α -amino acids) copper(II) complexes
Berestova T.V., Kuzina L.G., Amineva N.A., Faizrakhmanov I.S., Massalimov I.A., Mustafin A.G.
Journal of Molecular Structure, 2017
.
HIGH FIELD NMR STUDY OF THE BINDING OF LEAD(II) TO CYSTEINE AND GLUTATHIONE
Kane-Maguire L.A., Riley P.J.
Journal of Coordination Chemistry, 1993
.
Quantum chemistry study on the mechanism of oxidation of cysteine to cystine using hydrogen peroxide
Khavani M., Izadyar M., Reza Housaindokht M.
Phosphorus, Sulfur and Silicon and the Related Elements, 2015
.
Experimental and theoretical substantiation of differences of geometric isomers of copper(II) α-amino acid chelates in ATR-FTIR spectra
Berestova T.V., Khursan S.L., Mustafin A.G.
Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020
.
Logashina Y.A., Korolkova Y.V., Maleeva E.E., Osmakov D.I., Kozlov S.A., Andreev Y.A.
Mendeleev Communications, 2020
.
Discovering mechanisms of signaling-mediated cysteine oxidation
Poole L.B., Nelson K.J.
Current Opinion in Chemical Biology, 2008
.
Kinetics and Mechanism of the Reaction of Cysteine and Hydrogen Peroxide in Aqueous Solution
Luo D., Smith S.W., Anderson B.D.
Journal of Pharmaceutical Sciences, 2005
.
Levitskiy O.A., Aglamazova O.I., Dmitrieva A.V., Soloshonok V.A., Moriwaki H., Grishin Y.K., Magdesieva T.V.
Mendeleev Communications, 2021
.
Voltammetric sensor system based on Cu(II) and Zn(II) amino acid complexes for recognition and determination of atenolol enantiomers
Yarkaeva Y.A., Maistrenko V.N., Zagitova L.R., Nazyrov M.I., Berestova T.V.
Journal of Electroanalytical Chemistry, 2021