Keywords
aliphatic hydrocarbons.
carbon capture and utilization
CO2 hydrogenation
cobalt catalyst
copper catalyst
intermetallides
Abstract
Copper and lanthanum promoted cobalt catalysts for CO2 hydrogenation to higher hydrocarbons are described. The catalysts were prepared by the self-propagating high-temperature synthesis followed by alkaline leaching. They are active in CO2 hydrogenation at 200 °C under 10 bar pressure (CO2 : H2 = 1 : 3) with selectivity to C2+ alkanes up to 39%; no alkenes and alcohols are formed under these experimental conditions.
References
.
Aresta M., Dibenedetto A., Angelini A.
Chemical Reviews,
2013
.
BORG O., ERI S., BLEKKAN E., STORSATER S., WIGUM H., RYTTER E., HOLMEN A.
Journal of Catalysis,
2007
.
Eliseev O.L., Savost’yanov A.P., Sulima S.I., Lapidus A.L.
Mendeleev Communications,
2018
.
Kim J.Y., Rodriguez J.A., Hanson J.C., Frenkel A.I., Lee P.L.
Journal of the American Chemical Society,
2003
.
Agrell J.
Journal of Catalysis,
2003
.
Dorner R.W., Hardy D.R., Williams F.W., Davis B.H., Willauer H.D.
Energy & Fuels,
2009
.
Garces L.J., Hincapie B., Zerger R., Suib S.L.
Journal of Physical Chemistry C,
2015
.
von der Assen N., Jung J., Bardow A.
Energy and Environmental Science,
2013
.
Clark W.C., Harley A.G.
Annual Review of Environment and Resources,
2020
.
Borshch V.N., Pugacheva E.V., Zhuk S.Y., Andreev D.E., Sanin V.N., Yukhvid V.I.
Doklady Physical Chemistry,
2008
.
Borshch V.N., Eliseev O.L., Zhuk S.Y., Kazantsev R.V., Sanin V.N., Andreev D.E., Yukhvid V.I., Lapidus A.L.
Doklady Physical Chemistry,
2013
.
Borshch V.N., Pugacheva E.V., Zhuk S.Y., Sanin V.N., Andreev D.E., Yukhvid V.I., Eliseev O.L., Kazantsev R.V., Kolesnikov S.I., Kolesnikov I.M., Lapidus A.L.
Kinetics and Catalysis,
2015
.
Florides G.A., Christodoulides P.
Environmental International,
2009
.
Adesina A.A.
Applied Catalysis A: General,
1996
.
Riedel T., Claeys M., Schulz H., Schaub G., Nam S., Jun K., Choi M., Kishan G., Lee K.
Applied Catalysis A: General,
1999
.
Salmi T., Hakkarainen R.
Applied Catalysis,
1989
.
ARENA F., BARBERA K., ITALIANO G., BONURA G., SPADARO L., FRUSTERI F.
Journal of Catalysis,
2007
.
Brabant C., Khodakov A., Griboval-Constant A.
Comptes Rendus Chimie,
2016
.
Boreriboon N., Jiang X., Song C., Prasassarakich P.
Journal of CO2 Utilization,
2018
.
Shi Z., Yang H., Gao P., Li X., Zhong L., Wang H., Liu H., Wei W., Sun Y.
Catalysis Today,
2018
.
Shafer W.D., Jacobs G., Graham U.M., Hamdeh H.H., Davis B.H.
Journal of Catalysis,
2019
.
Cai Z., Li J., Liew K., Hu J.
Journal of Molecular Catalysis A Chemical,
2010
.
Anderson M., Wang H., Lin Y.S.
Reviews in Chemical Engineering,
2012
.
Wang T., Ding Y., Lü Y., Zhu H., Lin L.
Journal of Natural Gas Chemistry,
2008
.
Haddad G.J., Chen B., Goodwin, Jr. J.G.
Journal of Catalysis,
1996
.
Chen C., Cheng W., Lin S.
Applied Catalysis A: General,
2003
.
Guilera J., Díaz-López J.A., Berenguer A., Biset-Peiró M., Andreu T.
Applied Catalysis A: General,
2022
.
Okoye-Chine C.G., Otun K., Shiba N., Rashama C., Ugwu S.N., Onyeaka H., Okeke C.T.
Journal of CO2 Utilization,
2022