Home / Publications / Dynamic materials derived from biobased furans: towards the ‘sleeping giant’ awakening

Dynamic materials derived from biobased furans: towards the ‘sleeping giant’ awakening

Konstantin Igorevich Galkin 1, 2
Konstantin Igorevich Galkin
2 Department of Chemistry, Bauman Moscow State Technical University, Moscow, Russian Federation
Published 2022-12-26
Focus articleVolume 33, Issue 1, 1-8
6
Share
Cite this
GOST
 | 
Cite this
GOST Copy
Galkin K. I. Dynamic materials derived from biobased furans: towards the ‘sleeping giant’ awakening // Mendeleev Communications. 2022. Vol. 33. No. 1. pp. 1-8.
GOST all authors (up to 50) Copy
Galkin K. I. Dynamic materials derived from biobased furans: towards the ‘sleeping giant’ awakening // Mendeleev Communications. 2022. Vol. 33. No. 1. pp. 1-8.
RIS
 | 
Cite this
RIS Copy
TY - JOUR
DO - 10.1016/j.mencom.2023.01.001
UR - https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.01.001
TI - Dynamic materials derived from biobased furans: towards the ‘sleeping giant’ awakening
T2 - Mendeleev Communications
AU - Galkin, Konstantin Igorevich
PY - 2022
DA - 2022/12/26
PB - Mendeleev Communications
SP - 1-8
IS - 1
VL - 33
ER -
BibTex
 | 
Cite this
BibTex (up to 50 authors) Copy
@article{2022_Galkin,
author = {Konstantin Igorevich Galkin},
title = {Dynamic materials derived from biobased furans: towards the ‘sleeping giant’ awakening},
journal = {Mendeleev Communications},
year = {2022},
volume = {33},
publisher = {Mendeleev Communications},
month = {Dec},
url = {https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.01.001},
number = {1},
pages = {1--8},
doi = {10.1016/j.mencom.2023.01.001}
}
MLA
Cite this
MLA Copy
Galkin, Konstantin Igorevich. “Dynamic materials derived from biobased furans: towards the ‘sleeping giant’ awakening.” Mendeleev Communications, vol. 33, no. 1, Dec. 2022, pp. 1-8. https://mendcomm.colab.ws/publications/10.1016/j.mencom.2023.01.001.
Views / Downloads
1 / 7

Keywords

5-(hydroxymethyl)furfural
covalent adaptable networks.
Diels–Alder reaction
dynamers
plant biomass
platform chemicals
renewable furans

Abstract

This focus article presents the author’s view on the problems in the development of biorefining strategies based on the use of 5-(hydroxymethyl)furfural (HMF), the key product derived from renewable plant biomass that was recognized as the ‘sleeping giant’ of the sustainable chemistry. The several key problems that hinder the large-scale production of HMF and its applicability in the laboratory organic synthesis and industry are discussed. This minireview is also focused on the development of the dynamic cross-linked polymers with controlled three-dimensional structure based on Diels-Alder reaction of biobased HMF-derived furans with maleimides. Realization of scalable technologies for an efficient production of such ‘smart’ analogues of the traditional petrochemical-based materials could be the basis for the realization of the competitive HMF-promoted biorefining.

References

.
Design of solid catalysts for the conversion of biomass
Rinaldi R., Schüth F.
Energy and Environmental Science, 2009
.
Three-Dimensional Printing with Biomass-Derived PEF for Carbon-Neutral Manufacturing
Kucherov F.A., Gordeev E.G., Kashin A.S., Ananikov V.P.
Angewandte Chemie - International Edition, 2017
.
Efficient route for the construction of polycyclic systems from bioderived HMF
Kucherov F.A., Galkin K.I., Gordeev E.G., Ananikov V.P.
Green Chemistry, 2017
.
Alternative Monomers Based on Lignocellulose and Their Use for Polymer Production
Delidovich I., Hausoul P.J., Deng L., Pfützenreuter R., Rose M., Palkovits R.
Chemical Reviews, 2015
.
Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources
van Putten R., van der Waal J.C., de Jong E., Rasrendra C.B., Heeres H.J., de Vries J.G.
Chemical Reviews, 2013
.
Critical Influence of 5-Hydroxymethylfurfural Aging and Decomposition on the Utility of Biomass Conversion in Organic Synthesis.
Galkin K.I., Krivodaeva E.A., Romashov L.V., Zalesskiy S.S., Kachala V.V., Burykina J.V., Ananikov V.P.
Angewandte Chemie - International Edition, 2016
.
Directing-Group-Free, Carbonyl Group-Promoted Catalytic C-H Arylation of Bio-Based Furans
Karlinskii B.Y., Kostyukovich A.Y., Kucherov F.A., Galkin K.I., Kozlov K.S., Ananikov V.P.
ACS Catalysis, 2020
.
Current Situation of the Challenging Scale‐Up Development of Hydroxymethylfurfural Production
Rosenfeld C., Konnerth J., Sailer‐Kronlachner W., Solt P., Rosenau T., Herwijnen H.W.
ChemSusChem, 2020
.
Murai Reaction on Furfural Derivatives Enabled by Removable N,N'-Bidentate Directing Groups.
Pezzetta C., Veiros L.F., Oble J., Poli G.
Chemistry - A European Journal, 2017
.
Creating Diversity from Biomass: A Tandem Bio/Metal-Catalysis towards Chemoselective Synthesis of Densely Substituted Furans.
Ravasco J.M., Monteiro C.M., Siopa F., Trindade A.F., Oble J., Poli G., Simeonov S.P., Afonso C.A.
ChemSusChem, 2019
.
Atom-economic approach to the synthesis of α-(hetero)aryl substituted furan derivatives from biomass.
Romashov L.V., Kozlov K.S., Skorobogatko M.K., Kostyukovich A.Y., Ananikov V.P.
Chemistry - An Asian Journal, 2021
.
Systematic study of aromatic-ring-targeted cycloadditions of HMF platform chemicals.
Averochkin G.M., Gordeev E.G., Skorobogatko M.K., Kucherov F.A., Ananikov V.P.
ChemSusChem, 2021
.
Biobased C6-Furans in Organic Synthesis and Industry: Cycloaddition Chemistry as a Key Approach to Aromatic Building Blocks
Kucherov F.A., Romashov L.V., Averochkin G.M., Ananikov V.P.
ACS Sustainable Chemistry and Engineering, 2021
.
Facile Chemical Access to Biologically Active Norcantharidin Derivatives from Biomass
Galkin K., Kucherov F., Markov O., Egorova K., Posvyatenko A., Ananikov V.
Molecules, 2017
.
Technological aspects of fructose conversion to high-purity 5-hydroxymethylfurfural, a versatile platform chemical
Klushin V.A., Galkin K.I., Kashparova V.P., Krivodaeva E.A., Kravchenko O.A., Smirnova N.V., Chernyshev V.M., Ananikov V.P.
Russian Journal of Organic Chemistry, 2016
.
Biorefinery roadmap based on catalytic production and upgrading 5-hydroxymethylfurfural
Hou Q., Qi X., Zhen M., Qian H., Nie Y., Bai C., Zhang S., Bai X., Ju M.
Green Chemistry, 2021
.
Trends in the Diels–Alder reaction in polymer chemistry
Briou B., Améduri B., Boutevin B.
Chemical Society Reviews, 2021
.
Heterogeneous Diels–Alder catalysis for biomass-derived aromatic compounds
Settle A.E., Berstis L., Rorrer N.A., Roman-Leshkóv Y., Beckham G.T., Richards R.M., Vardon D.R.
Green Chemistry, 2017
.
Synthesis of Renewable meta ‐Xylylenediamine from Biomass‐Derived Furfural
Scodeller I., Mansouri S., Morvan D., Muller E., de Oliveira Vigier K., Wischert R., Jérôme F.
Angewandte Chemie - International Edition, 2018
.
A Combined Experimental–Theoretical Study on Diels‐Alder Reaction with Bio‐Based Furfural: Towards Renewable Aromatics
Scodeller I., De Oliveira Vigier K., Muller E., Ma C., Guégan F., Wischert R., Jérôme F.
ChemSusChem, 2020
.
Direct Diels–Alder reactions of furfural derivatives with maleimides
Cioc R.C., Lutz M., Pidko E.A., Crockatt M., van der Waal J.C., Bruijnincx P.C.
Green Chemistry, 2021
.
Renewable and Responsive Cross-Linked Systems Based on Polyurethane Backbones from Clickable Biobased Bismaleimide Architecture
Tremblay-Parrado K., Bordin C., Nicholls S., Heinrich B., Donnio B., Avérous L.
Macromolecules, 2020
.
Mechanically Triggered Small Molecule Release from a Masked Furfuryl Carbonate.
Hu X., Zeng T., Husic C.C., Robb M.J.
Journal of the American Chemical Society, 2019
.
Advances in polymer precursors and bio‐based polymers synthesized from 5‐hydroxymethylfurfural
Zhang D., Dumont M.
Journal of Polymer Science, Part A: Polymer Chemistry, 2017
.
Bio-Based Furan Polymers with Self-Healing Ability
Zeng C., Seino H., Ren J., Hatanaka K., Yoshie N.
Macromolecules, 2013
.
Biobased poly(2,5‐furandimethylene succinate‐co‐butylene succinate) crosslinked by reversible Diels–Alder reaction
Ikezaki T., Matsuoka R., Hatanaka K., Yoshie N.
Journal of Polymer Science, Part A: Polymer Chemistry, 2013
.
Furan monomers and polymers from renewable plant biomass
Kashparova V.P., Chernysheva D.V., Klushin V.A., Andreeva V.E., Kravchenko O.A., Smirnova N.V.
Russian Chemical Reviews, 2021
.
Recent Progress on Bio-Based Polyesters Derived from 2,5-Furandicarbonxylic Acid (FDCA)
.
The Road to Bring FDCA and PEF to the Market
de Jong E., Visser H.(., Dias A.S., Harvey C., Gruter G.M.
Polymers, 2022
.
Difuranic Diols for Renewable Polymers with Pendent Furan Rings
Wilson J.F., Chen E.Y.
ACS Sustainable Chemistry and Engineering, 2019
.
Critical Assessment of Reaction Pathways for Next-Generation Biofuels from Renewable Resources: 5-Ethoxymethylfurfural
.
The Chemical Route to a Carbon Dioxide Neutral World
Martens J.A., Bogaerts A., De Kimpe N., Jacobs P.A., Marin G.B., Rabaey K., Saeys M., Verhelst S.
ChemSusChem, 2017
.
Nonisocyanate route to 2,5‐bis(hydroxymethyl)furan‐based polyurethanes crosslinked by reversible diels–alder reactions
.
The Interplay between Kinetics and Thermodynamics in Furan Diels–Alder Chemistry for Sustainable Chemicals Production
Cioc R.C., Crockatt M., van der Waal J.C., Bruijnincx P.C.
Angewandte Chemie - International Edition, 2022
.
Furan Polymers: State of the Art and Perspectives
Gandini A., M. Lacerda T.
Macromolecular Materials and Engineering, 2022
.
Current Advances in the Sustainable Conversion of 5‐Hydroxymethylfurfural into 2,5‐Furandicarboxylic Acid
Totaro G., Sisti L., Marchese P., Colonna M., Romano A., Gioia C., Vannini M., Celli A.
ChemSusChem, 2022
.
An Overview of Self‐Healable Polymers and Recent Advances in the Field
El Choufi N., Mustapha S., Tehrani B. A., Grady B.P.
Macromolecular Rapid Communications, 2022
.
C−H Activation Based Functionalization of Furfural Derivatives
Mori A., Curpanen S., Pezzetta C., Perez‐Luna A., Poli G., Oble J.
European Journal of Organic Chemistry, 2022
.
A Perspective on PEF Synthesis, Properties, and End-Life
Loos K., Zhang R., Pereira I., Agostinho B., Hu H., Maniar D., Sbirrazzuoli N., Silvestre A.J., Guigo N., Sousa A.F.
Frontiers in Chemistry, 2020
.
Advances in catalytic routes for the production of carboxylic acids from biomass: a step forward for sustainable polymers
Iglesias J., Martínez-Salazar I., Maireles-Torres P., Martin Alonso D., Mariscal R., López Granados M.
Chemical Society Reviews, 2020
.
Furoic acid and derivatives as atypical dienes in Diels–Alder reactions
Cioc R.C., Smak T.J., Crockatt M., van der Waal J.C., Bruijnincx P.C.
Green Chemistry, 2021
.
Furan platform chemicals beyond fuels and plastics
Bielski R., Grynkiewicz G.
Green Chemistry, 2021
.
Bioplastics for a circular economy
Rosenboom J., Langer R., Traverso G.
Nature Reviews Materials, 2022
.
An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery
Takkellapati S., Li T., Gonzalez M.A.
Clean Technologies and Environmental Policy, 2018
.
.
Value-added bioconversion of biomass by solid-state fermentation
Chen H., He Q.
Journal of Chemical Technology and Biotechnology, 2012
.
Recent advances in catalytic conversion of biomass to 5-hydroxymethylfurfural and 2, 5-dimethylfuran
Wang H., Zhu C., Li D., Liu Q., Tan J., Wang C., Cai C., Ma L.
Renewable and Sustainable Energy Reviews, 2019
.
State-of-the-art advances and perspectives in the separation of biomass-derived 5-hydroxymethylfurfural
Hu L., Jiang Y., Wu Z., Wang X., He A., Xu J., Xu J.
Journal of Cleaner Production, 2020
.
Sendzikiene E., Makareviciene V.
Mendeleev Communications, 2021
.
Self-healing by Diels-Alder cycloaddition in advanced functional polymers: A review
Ratwani C.R., Kamali A.R., Abdelkader A.M.
Progress in Materials Science, 2023
.
Nuzhdin A.L., Bukhtiyarova M.V., Eltsov I.V., Bukhtiyarov V.I.
Mendeleev Communications, 2021
.
Conversion of chitin biomass into 5-hydroxymethylfurfural: A review
Cai X., Wang Z., Ye Y., Wang D., Zhang Z., Zheng Z., Liu Y., Li S.
Renewable and Sustainable Energy Reviews, 2021
.
One-pot synthesis of 2,5-bis(hydroxymethyl)furan from biomass derived 5-(chloromethyl)furfural in high yield
Chen B., Feng Y., Ma S., Xie W., Yan G., Li Z., Sperry J., Yang S., Tang X., Sun Y., Lin L., Zeng X.
Journal of Energy Chemistry, 2023